Cargando…
Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks
Astrocytes participate in brain functions through Ca(2+) signals, including Ca(2+) waves and Ca(2+) oscillations. Currently the mechanisms of Ca(2+) signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca(2+) flows betwe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485305/ https://www.ncbi.nlm.nih.gov/pubmed/23119049 http://dx.doi.org/10.1371/journal.pone.0048534 |
_version_ | 1782248280320638976 |
---|---|
author | Li, Bing Chen, Shangbin Zeng, Shaoqun Luo, Qingming Li, Pengcheng |
author_facet | Li, Bing Chen, Shangbin Zeng, Shaoqun Luo, Qingming Li, Pengcheng |
author_sort | Li, Bing |
collection | PubMed |
description | Astrocytes participate in brain functions through Ca(2+) signals, including Ca(2+) waves and Ca(2+) oscillations. Currently the mechanisms of Ca(2+) signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca(2+) flows between the extracellular space, the cytoplasm and the endoplasmic reticulum of astrocytes to the generation of spontaneous Ca(2+) oscillations (CASs) and cortical spreading depression (CSD)-triggered Ca(2+) waves (CSDCWs) in a one-dimensional astrocyte network. This model shows that CASs depend primarily on Ca(2+) released from internal stores of astrocytes, and CSDCWs depend mainly on voltage-gated Ca(2+) influx. It predicts that voltage-gated Ca(2+) influx is able to generate Ca(2+) waves during the process of CSD even after depleting internal Ca(2+) stores. Furthermore, the model investigates the interactions between CASs and CSDCWs and shows that the pass of CSDCWs suppresses CASs, whereas CASs do not prevent the generation of CSDCWs. This work quantitatively analyzes the generation of astrocytic Ca(2+) signals and indicates different mechanisms underlying CSDCWs and non-CSDCWs. Research on the different types of Ca(2+) signals might help to understand the ways by which astrocytes participate in information processing in brain functions. |
format | Online Article Text |
id | pubmed-3485305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34853052012-11-01 Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks Li, Bing Chen, Shangbin Zeng, Shaoqun Luo, Qingming Li, Pengcheng PLoS One Research Article Astrocytes participate in brain functions through Ca(2+) signals, including Ca(2+) waves and Ca(2+) oscillations. Currently the mechanisms of Ca(2+) signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca(2+) flows between the extracellular space, the cytoplasm and the endoplasmic reticulum of astrocytes to the generation of spontaneous Ca(2+) oscillations (CASs) and cortical spreading depression (CSD)-triggered Ca(2+) waves (CSDCWs) in a one-dimensional astrocyte network. This model shows that CASs depend primarily on Ca(2+) released from internal stores of astrocytes, and CSDCWs depend mainly on voltage-gated Ca(2+) influx. It predicts that voltage-gated Ca(2+) influx is able to generate Ca(2+) waves during the process of CSD even after depleting internal Ca(2+) stores. Furthermore, the model investigates the interactions between CASs and CSDCWs and shows that the pass of CSDCWs suppresses CASs, whereas CASs do not prevent the generation of CSDCWs. This work quantitatively analyzes the generation of astrocytic Ca(2+) signals and indicates different mechanisms underlying CSDCWs and non-CSDCWs. Research on the different types of Ca(2+) signals might help to understand the ways by which astrocytes participate in information processing in brain functions. Public Library of Science 2012-10-31 /pmc/articles/PMC3485305/ /pubmed/23119049 http://dx.doi.org/10.1371/journal.pone.0048534 Text en © 2012 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Bing Chen, Shangbin Zeng, Shaoqun Luo, Qingming Li, Pengcheng Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks |
title | Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks |
title_full | Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks |
title_fullStr | Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks |
title_full_unstemmed | Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks |
title_short | Modeling the Contributions of Ca(2+) Flows to Spontaneous Ca(2+) Oscillations and Cortical Spreading Depression-Triggered Ca(2+) Waves in Astrocyte Networks |
title_sort | modeling the contributions of ca(2+) flows to spontaneous ca(2+) oscillations and cortical spreading depression-triggered ca(2+) waves in astrocyte networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485305/ https://www.ncbi.nlm.nih.gov/pubmed/23119049 http://dx.doi.org/10.1371/journal.pone.0048534 |
work_keys_str_mv | AT libing modelingthecontributionsofca2flowstospontaneousca2oscillationsandcorticalspreadingdepressiontriggeredca2wavesinastrocytenetworks AT chenshangbin modelingthecontributionsofca2flowstospontaneousca2oscillationsandcorticalspreadingdepressiontriggeredca2wavesinastrocytenetworks AT zengshaoqun modelingthecontributionsofca2flowstospontaneousca2oscillationsandcorticalspreadingdepressiontriggeredca2wavesinastrocytenetworks AT luoqingming modelingthecontributionsofca2flowstospontaneousca2oscillationsandcorticalspreadingdepressiontriggeredca2wavesinastrocytenetworks AT lipengcheng modelingthecontributionsofca2flowstospontaneousca2oscillationsandcorticalspreadingdepressiontriggeredca2wavesinastrocytenetworks |