Cargando…
Alcohol Affects the Brain's Resting-State Network in Social Drinkers
Acute alcohol intake is known to enhance inhibition through facilitation of GABA(A) receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485329/ https://www.ncbi.nlm.nih.gov/pubmed/23119078 http://dx.doi.org/10.1371/journal.pone.0048641 |
_version_ | 1782248285427204096 |
---|---|
author | Lithari, Chrysa Klados, Manousos A. Pappas, Costas Albani, Maria Kapoukranidou, Dorothea Kovatsi, Leda Bamidis, Panagiotis D. Papadelis, Christos L. |
author_facet | Lithari, Chrysa Klados, Manousos A. Pappas, Costas Albani, Maria Kapoukranidou, Dorothea Kovatsi, Leda Bamidis, Panagiotis D. Papadelis, Christos L. |
author_sort | Lithari, Chrysa |
collection | PubMed |
description | Acute alcohol intake is known to enhance inhibition through facilitation of GABA(A) receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol intake would increase the functional connectivity of the human brain resting-state network (RSN). To test our hypothesis, electroencephalographic (EEG) measurements were recorded from healthy social drinkers at rest, during eyes-open and eyes-closed sessions, after administering to them an alcoholic beverage or placebo respectively. Salivary alcohol and cortisol served to measure the inebriation and stress levels. By calculating Magnitude Square Coherence (MSC) on standardized Low Resolution Electromagnetic Tomography (sLORETA) solutions, we formed cortical networks over several frequency bands, which were then analyzed in the context of functional connectivity and graph theory. MSC was increased (p<0.05, corrected with False Discovery Rate, FDR corrected) in alpha, beta (eyes-open) and theta bands (eyes-closed) following acute alcohol intake. Graph parameters were accordingly altered in these bands quantifying the effect of alcohol on the structure of brain networks; global efficiency and density were higher and path length was lower during alcohol (vs. placebo, p<0.05). Salivary alcohol concentration was positively correlated with the density of the network in beta band. The degree of specific nodes was elevated following alcohol (vs. placebo). Our findings support the hypothesis that short-term inebriation considerably increases large-scale connectivity in the RSN. The increased baseline functional connectivity can -at least partially- be attributed to the alcohol-induced disruption of the delicate balance between inhibitory and excitatory neurotransmission in favor of inhibitory influences. Thus, it is suggested that short-term inebriation is associated, as expected, to increased GABA transmission and functional connectivity, while long-term alcohol consumption may be linked to exactly the opposite effect. |
format | Online Article Text |
id | pubmed-3485329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34853292012-11-01 Alcohol Affects the Brain's Resting-State Network in Social Drinkers Lithari, Chrysa Klados, Manousos A. Pappas, Costas Albani, Maria Kapoukranidou, Dorothea Kovatsi, Leda Bamidis, Panagiotis D. Papadelis, Christos L. PLoS One Research Article Acute alcohol intake is known to enhance inhibition through facilitation of GABA(A) receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol intake would increase the functional connectivity of the human brain resting-state network (RSN). To test our hypothesis, electroencephalographic (EEG) measurements were recorded from healthy social drinkers at rest, during eyes-open and eyes-closed sessions, after administering to them an alcoholic beverage or placebo respectively. Salivary alcohol and cortisol served to measure the inebriation and stress levels. By calculating Magnitude Square Coherence (MSC) on standardized Low Resolution Electromagnetic Tomography (sLORETA) solutions, we formed cortical networks over several frequency bands, which were then analyzed in the context of functional connectivity and graph theory. MSC was increased (p<0.05, corrected with False Discovery Rate, FDR corrected) in alpha, beta (eyes-open) and theta bands (eyes-closed) following acute alcohol intake. Graph parameters were accordingly altered in these bands quantifying the effect of alcohol on the structure of brain networks; global efficiency and density were higher and path length was lower during alcohol (vs. placebo, p<0.05). Salivary alcohol concentration was positively correlated with the density of the network in beta band. The degree of specific nodes was elevated following alcohol (vs. placebo). Our findings support the hypothesis that short-term inebriation considerably increases large-scale connectivity in the RSN. The increased baseline functional connectivity can -at least partially- be attributed to the alcohol-induced disruption of the delicate balance between inhibitory and excitatory neurotransmission in favor of inhibitory influences. Thus, it is suggested that short-term inebriation is associated, as expected, to increased GABA transmission and functional connectivity, while long-term alcohol consumption may be linked to exactly the opposite effect. Public Library of Science 2012-10-31 /pmc/articles/PMC3485329/ /pubmed/23119078 http://dx.doi.org/10.1371/journal.pone.0048641 Text en © 2012 Lithari et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lithari, Chrysa Klados, Manousos A. Pappas, Costas Albani, Maria Kapoukranidou, Dorothea Kovatsi, Leda Bamidis, Panagiotis D. Papadelis, Christos L. Alcohol Affects the Brain's Resting-State Network in Social Drinkers |
title | Alcohol Affects the Brain's Resting-State Network in Social Drinkers |
title_full | Alcohol Affects the Brain's Resting-State Network in Social Drinkers |
title_fullStr | Alcohol Affects the Brain's Resting-State Network in Social Drinkers |
title_full_unstemmed | Alcohol Affects the Brain's Resting-State Network in Social Drinkers |
title_short | Alcohol Affects the Brain's Resting-State Network in Social Drinkers |
title_sort | alcohol affects the brain's resting-state network in social drinkers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485329/ https://www.ncbi.nlm.nih.gov/pubmed/23119078 http://dx.doi.org/10.1371/journal.pone.0048641 |
work_keys_str_mv | AT litharichrysa alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers AT kladosmanousosa alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers AT pappascostas alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers AT albanimaria alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers AT kapoukranidoudorothea alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers AT kovatsileda alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers AT bamidispanagiotisd alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers AT papadelischristosl alcoholaffectsthebrainsrestingstatenetworkinsocialdrinkers |