Cargando…

Leptospira and Inflammation

Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against leptospira components. Leptospira, possess a wide variet...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonçalves-de-Albuquerque, C. F., Burth, P., Silva, A. R., Younes-Ibrahim, M., Castro-Faria-Neto, H. C., Castro-Faria, M. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485547/
https://www.ncbi.nlm.nih.gov/pubmed/23132959
http://dx.doi.org/10.1155/2012/317950
_version_ 1782248317622681600
author Gonçalves-de-Albuquerque, C. F.
Burth, P.
Silva, A. R.
Younes-Ibrahim, M.
Castro-Faria-Neto, H. C.
Castro-Faria, M. V.
author_facet Gonçalves-de-Albuquerque, C. F.
Burth, P.
Silva, A. R.
Younes-Ibrahim, M.
Castro-Faria-Neto, H. C.
Castro-Faria, M. V.
author_sort Gonçalves-de-Albuquerque, C. F.
collection PubMed
description Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against leptospira components. Leptospira, possess a wide variety of mechanisms that allow them to evade the host immune system and cause infection. Many molecules contribute to the ability of Leptospira to adhere, invade, and colonize. The recent sequencing of the Leptospira genome has increased our knowledge about this pathogen. Although the virulence factors, molecular targets, mechanisms of inflammation, and signaling pathways triggered by leptospiral antigens have been studied, some questions are still unanswered. Toll-like receptors (TLRs) are the primary sensors of invading pathogens. TLRs recognize conserved microbial pattern molecules and activate signaling pathways that are pivotal to innate and adaptive immune responses. Recently, a new molecular target has emerged—the Na/K-ATPase—which may contribute to inflammatory and metabolic alteration in this syndrome. Na/K-ATPase is a target for specific fatty acids of host origin and for bacterial components such as the glycolipoprotein fraction (GLP) that may lead to inflammasome activation. We propose that in addition to TLRs, Na/K-ATPase may play a role in the innate response to leptospirosis infection.
format Online
Article
Text
id pubmed-3485547
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-34855472012-11-06 Leptospira and Inflammation Gonçalves-de-Albuquerque, C. F. Burth, P. Silva, A. R. Younes-Ibrahim, M. Castro-Faria-Neto, H. C. Castro-Faria, M. V. Mediators Inflamm Review Article Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against leptospira components. Leptospira, possess a wide variety of mechanisms that allow them to evade the host immune system and cause infection. Many molecules contribute to the ability of Leptospira to adhere, invade, and colonize. The recent sequencing of the Leptospira genome has increased our knowledge about this pathogen. Although the virulence factors, molecular targets, mechanisms of inflammation, and signaling pathways triggered by leptospiral antigens have been studied, some questions are still unanswered. Toll-like receptors (TLRs) are the primary sensors of invading pathogens. TLRs recognize conserved microbial pattern molecules and activate signaling pathways that are pivotal to innate and adaptive immune responses. Recently, a new molecular target has emerged—the Na/K-ATPase—which may contribute to inflammatory and metabolic alteration in this syndrome. Na/K-ATPase is a target for specific fatty acids of host origin and for bacterial components such as the glycolipoprotein fraction (GLP) that may lead to inflammasome activation. We propose that in addition to TLRs, Na/K-ATPase may play a role in the innate response to leptospirosis infection. Hindawi Publishing Corporation 2012 2012-10-21 /pmc/articles/PMC3485547/ /pubmed/23132959 http://dx.doi.org/10.1155/2012/317950 Text en Copyright © 2012 C. F. Gonçalves-de-Albuquerque et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Article
Gonçalves-de-Albuquerque, C. F.
Burth, P.
Silva, A. R.
Younes-Ibrahim, M.
Castro-Faria-Neto, H. C.
Castro-Faria, M. V.
Leptospira and Inflammation
title Leptospira and Inflammation
title_full Leptospira and Inflammation
title_fullStr Leptospira and Inflammation
title_full_unstemmed Leptospira and Inflammation
title_short Leptospira and Inflammation
title_sort leptospira and inflammation
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485547/
https://www.ncbi.nlm.nih.gov/pubmed/23132959
http://dx.doi.org/10.1155/2012/317950
work_keys_str_mv AT goncalvesdealbuquerquecf leptospiraandinflammation
AT burthp leptospiraandinflammation
AT silvaar leptospiraandinflammation
AT younesibrahimm leptospiraandinflammation
AT castrofarianetohc leptospiraandinflammation
AT castrofariamv leptospiraandinflammation