Cargando…
Win percentage: a novel measure for assessing the suitability of machine classifiers for biological problems
BACKGROUND: Selecting an appropriate classifier for a particular biological application poses a difficult problem for researchers and practitioners alike. In particular, choosing a classifier depends heavily on the features selected. For high-throughput biomedical datasets, feature selection is ofte...
Autores principales: | Parry, R Mitchell, Phan, John H, Wang, May D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485616/ https://www.ncbi.nlm.nih.gov/pubmed/22536905 http://dx.doi.org/10.1186/1471-2105-13-S3-S7 |
Ejemplares similares
-
NIPS workshop on New Problems and Methods in Computational Biology
por: Chechik, Gal, et al.
Publicado: (2007) -
WIN Symposium 2022 – Abstract Poster Presentations
Publicado: (2022) -
Feature selection and classifier performance on diverse bio- logical datasets
por: Hemphill, Edward, et al.
Publicado: (2014) -
A new pairwise kernel for biological network inference with support vector machines
por: Vert, Jean-Philippe, et al.
Publicado: (2007) -
BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature
por: Kuo, Cheng-Ju, et al.
Publicado: (2009)