Cargando…

Red Ginseng Extract Attenuates Kainate-Induced Excitotoxicity by Antioxidative Effects

This study investigated the neuroprotective activity of red ginseng extract (RGE, Panax ginseng, C. A. Meyer) against kainic acid- (KA-) induced excitotoxicity in vitro and in vivo. In hippocampal cells, RGE inhibited KA-induced excitotoxicity in a dose-dependent manner as measured by the MTT assay....

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Jin-Yi, Ahn, Sun-Young, Oh, Eun-Hye, Nam, Sang-Yoon, Hong, Jin Tae, Oh, Ki-Wan, Lee, Mi Kyeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485976/
https://www.ncbi.nlm.nih.gov/pubmed/23133495
http://dx.doi.org/10.1155/2012/479016
Descripción
Sumario:This study investigated the neuroprotective activity of red ginseng extract (RGE, Panax ginseng, C. A. Meyer) against kainic acid- (KA-) induced excitotoxicity in vitro and in vivo. In hippocampal cells, RGE inhibited KA-induced excitotoxicity in a dose-dependent manner as measured by the MTT assay. To study the possible mechanisms of the RGE-mediated neuroprotective effect against KA-induced cytotoxicity, we examined the levels of intracellular reactive oxygen species (ROS) and [Ca(2+)](i) in cultured hippocampal neurons and found that RGE treatment dose-dependently inhibited intracellular ROS and [Ca(2+)](i) elevation. Oral administration of RGE (30 and 200 mg/kg) in mice decreased the malondialdehyde (MDA) level induced by KA injection (30 mg/kg, i.p.). In addition, similar results were obtained after pretreatment with the radical scavengers Trolox and N, N′-dimethylthiourea (DMTU). Finally, after confirming the protective effect of RGE on hippocampal brain-derived neurotropic factor (BDNF) protein levels, we found that RGE is active compounds mixture in KA-induced hippocampal mossy-fiber function improvement. Furthermore, RGE eliminated 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, and the IC(50) was approximately 10 mg/ml. The reductive activity of RGE, as measured by reaction with hydroxyl radical ((•)OH), was similar to trolox. The second-order rate constant of RGE for (•)OH was 3.5–4.5 × 10(9) M(−1)·S(−1). Therefore, these results indicate that RGE possesses radical reduction activity and alleviates KA-induced excitotoxicity by quenching ROS in hippocampal neurons.