Cargando…
Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis
BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway and angiogenesis in brain cancer act as an engine for tumor initiation, expansion and response to therapy. Since the existing literature does not have any models that investigate the impact of both angiogenesis and molecular s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487967/ https://www.ncbi.nlm.nih.gov/pubmed/22935054 http://dx.doi.org/10.1186/1471-2105-13-218 |
_version_ | 1782248555463835648 |
---|---|
author | Sun, Xiaoqiang Zhang, Le Tan, Hua Bao, Jiguang Strouthos, Costas Zhou, Xiaobo |
author_facet | Sun, Xiaoqiang Zhang, Le Tan, Hua Bao, Jiguang Strouthos, Costas Zhou, Xiaobo |
author_sort | Sun, Xiaoqiang |
collection | PubMed |
description | BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway and angiogenesis in brain cancer act as an engine for tumor initiation, expansion and response to therapy. Since the existing literature does not have any models that investigate the impact of both angiogenesis and molecular signaling pathways on treatment, we propose a novel multi-scale, agent-based computational model that includes both angiogenesis and EGFR modules to study the response of brain cancer under tyrosine kinase inhibitors (TKIs) treatment. RESULTS: The novel angiogenesis module integrated into the agent-based tumor model is based on a set of reaction–diffusion equations that describe the spatio-temporal evolution of the distributions of micro-environmental factors such as glucose, oxygen, TGFα, VEGF and fibronectin. These molecular species regulate tumor growth during angiogenesis. Each tumor cell is equipped with an EGFR signaling pathway linked to a cell-cycle pathway to determine its phenotype. EGFR TKIs are delivered through the blood vessels of tumor microvasculature and the response to treatment is studied. CONCLUSIONS: Our simulations demonstrated that entire tumor growth profile is a collective behaviour of cells regulated by the EGFR signaling pathway and the cell cycle. We also found that angiogenesis has a dual effect under TKI treatment: on one hand, through neo-vasculature TKIs are delivered to decrease tumor invasion; on the other hand, the neo-vasculature can transport glucose and oxygen to tumor cells to maintain their metabolism, which results in an increase of cell survival rate in the late simulation stages. |
format | Online Article Text |
id | pubmed-3487967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34879672012-11-08 Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis Sun, Xiaoqiang Zhang, Le Tan, Hua Bao, Jiguang Strouthos, Costas Zhou, Xiaobo BMC Bioinformatics Software BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway and angiogenesis in brain cancer act as an engine for tumor initiation, expansion and response to therapy. Since the existing literature does not have any models that investigate the impact of both angiogenesis and molecular signaling pathways on treatment, we propose a novel multi-scale, agent-based computational model that includes both angiogenesis and EGFR modules to study the response of brain cancer under tyrosine kinase inhibitors (TKIs) treatment. RESULTS: The novel angiogenesis module integrated into the agent-based tumor model is based on a set of reaction–diffusion equations that describe the spatio-temporal evolution of the distributions of micro-environmental factors such as glucose, oxygen, TGFα, VEGF and fibronectin. These molecular species regulate tumor growth during angiogenesis. Each tumor cell is equipped with an EGFR signaling pathway linked to a cell-cycle pathway to determine its phenotype. EGFR TKIs are delivered through the blood vessels of tumor microvasculature and the response to treatment is studied. CONCLUSIONS: Our simulations demonstrated that entire tumor growth profile is a collective behaviour of cells regulated by the EGFR signaling pathway and the cell cycle. We also found that angiogenesis has a dual effect under TKI treatment: on one hand, through neo-vasculature TKIs are delivered to decrease tumor invasion; on the other hand, the neo-vasculature can transport glucose and oxygen to tumor cells to maintain their metabolism, which results in an increase of cell survival rate in the late simulation stages. BioMed Central 2012-08-30 /pmc/articles/PMC3487967/ /pubmed/22935054 http://dx.doi.org/10.1186/1471-2105-13-218 Text en Copyright ©2012 Sun et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Sun, Xiaoqiang Zhang, Le Tan, Hua Bao, Jiguang Strouthos, Costas Zhou, Xiaobo Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis |
title | Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis |
title_full | Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis |
title_fullStr | Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis |
title_full_unstemmed | Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis |
title_short | Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: Incorporating EGFR signaling pathway and angiogenesis |
title_sort | multi-scale agent-based brain cancer modeling and prediction of tki treatment response: incorporating egfr signaling pathway and angiogenesis |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487967/ https://www.ncbi.nlm.nih.gov/pubmed/22935054 http://dx.doi.org/10.1186/1471-2105-13-218 |
work_keys_str_mv | AT sunxiaoqiang multiscaleagentbasedbraincancermodelingandpredictionoftkitreatmentresponseincorporatingegfrsignalingpathwayandangiogenesis AT zhangle multiscaleagentbasedbraincancermodelingandpredictionoftkitreatmentresponseincorporatingegfrsignalingpathwayandangiogenesis AT tanhua multiscaleagentbasedbraincancermodelingandpredictionoftkitreatmentresponseincorporatingegfrsignalingpathwayandangiogenesis AT baojiguang multiscaleagentbasedbraincancermodelingandpredictionoftkitreatmentresponseincorporatingegfrsignalingpathwayandangiogenesis AT strouthoscostas multiscaleagentbasedbraincancermodelingandpredictionoftkitreatmentresponseincorporatingegfrsignalingpathwayandangiogenesis AT zhouxiaobo multiscaleagentbasedbraincancermodelingandpredictionoftkitreatmentresponseincorporatingegfrsignalingpathwayandangiogenesis |