Cargando…
Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis
BACKGROUND: High-accuracy prediction tools are essential in the post-genomic era to define organellar proteomes in their full complexity. We recently applied a discriminative machine learning approach to predict plant proteins carrying peroxisome targeting signals (PTS) type 1 from genome sequences....
Autores principales: | Chowdhary, Gopal, Kataya, Amr RA, Lingner, Thomas, Reumann, Sigrun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487989/ https://www.ncbi.nlm.nih.gov/pubmed/22882975 http://dx.doi.org/10.1186/1471-2229-12-142 |
Ejemplares similares
-
PredPlantPTS1: A Web Server for the Prediction of Plant Peroxisomal Proteins
por: Reumann, Sigrun, et al.
Publicado: (2012) -
Evolutionary Maintenance of the PTS2 Protein Import Pathway in the Stramenopile Alga Nannochloropsis
por: Kechasov, Dmitry, et al.
Publicado: (2020) -
The essential role of fungal peroxisomes in plant infection
por: Falter, Christian, et al.
Publicado: (2022) -
A conserved tripeptide sorts proteins to peroxisomes
Publicado: (1989) -
PPero, a Computational Model for Plant PTS1 Type Peroxisomal Protein Prediction
por: Wang, Jue, et al.
Publicado: (2017)