Cargando…
Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion
BACKGROUND: High-density electroencephalography (EEG) with active electrodes allows for monitoring of electrocortical dynamics during human walking but movement artifacts have the potential to dominate the signal. One potential method for recovering cognitive brain dynamics in the presence of gait-r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488562/ https://www.ncbi.nlm.nih.gov/pubmed/22828128 http://dx.doi.org/10.1186/1743-0003-9-47 |
_version_ | 1782248638917902336 |
---|---|
author | Lau, Troy M Gwin, Joseph T McDowell, Kaleb G Ferris, Daniel P |
author_facet | Lau, Troy M Gwin, Joseph T McDowell, Kaleb G Ferris, Daniel P |
author_sort | Lau, Troy M |
collection | PubMed |
description | BACKGROUND: High-density electroencephalography (EEG) with active electrodes allows for monitoring of electrocortical dynamics during human walking but movement artifacts have the potential to dominate the signal. One potential method for recovering cognitive brain dynamics in the presence of gait-related artifact is the Weighted Phase Lag Index. METHODS: We tested the ability of Weighted Phase Lag Index to recover event-related potentials during locomotion. Weighted Phase Lag Index is a functional connectivity measure that quantified how consistently 90° (or 270°) phase ‘lagging’ one EEG signal was compared to another. 248-channel EEG was recorded as eight subjects performed a visual oddball discrimination and response task during standing and walking (0.8 or 1.2 m/s) on a treadmill. RESULTS: Applying Weighted Phase Lag Index across channels we were able to recover a p300-like cognitive response during walking. This response was similar to the classic amplitude-based p300 we also recovered during standing. We also showed that the Weighted Phase Lag Index detects more complex and variable activity patterns than traditional voltage-amplitude measures. This variability makes it challenging to compare brain activity over time and across subjects. In contrast, a statistical metric of the index’s variability, calculated over a moving time window, provided a more generalized measure of behavior. Weighted Phase Lag Index Stability returned a peak change of 1.8% + −0.5% from baseline for the walking case and 3.9% + −1.3% for the standing case. CONCLUSIONS: These findings suggest that both Weighted Phase Lag Index and Weighted Phase Lag Index Stability have potential for the on-line analysis of cognitive dynamics within EEG during human movement. The latter may be more useful from extracting general principles of neural behavior across subjects and conditions. |
format | Online Article Text |
id | pubmed-3488562 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34885622012-11-08 Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion Lau, Troy M Gwin, Joseph T McDowell, Kaleb G Ferris, Daniel P J Neuroeng Rehabil Research BACKGROUND: High-density electroencephalography (EEG) with active electrodes allows for monitoring of electrocortical dynamics during human walking but movement artifacts have the potential to dominate the signal. One potential method for recovering cognitive brain dynamics in the presence of gait-related artifact is the Weighted Phase Lag Index. METHODS: We tested the ability of Weighted Phase Lag Index to recover event-related potentials during locomotion. Weighted Phase Lag Index is a functional connectivity measure that quantified how consistently 90° (or 270°) phase ‘lagging’ one EEG signal was compared to another. 248-channel EEG was recorded as eight subjects performed a visual oddball discrimination and response task during standing and walking (0.8 or 1.2 m/s) on a treadmill. RESULTS: Applying Weighted Phase Lag Index across channels we were able to recover a p300-like cognitive response during walking. This response was similar to the classic amplitude-based p300 we also recovered during standing. We also showed that the Weighted Phase Lag Index detects more complex and variable activity patterns than traditional voltage-amplitude measures. This variability makes it challenging to compare brain activity over time and across subjects. In contrast, a statistical metric of the index’s variability, calculated over a moving time window, provided a more generalized measure of behavior. Weighted Phase Lag Index Stability returned a peak change of 1.8% + −0.5% from baseline for the walking case and 3.9% + −1.3% for the standing case. CONCLUSIONS: These findings suggest that both Weighted Phase Lag Index and Weighted Phase Lag Index Stability have potential for the on-line analysis of cognitive dynamics within EEG during human movement. The latter may be more useful from extracting general principles of neural behavior across subjects and conditions. BioMed Central 2012-07-24 /pmc/articles/PMC3488562/ /pubmed/22828128 http://dx.doi.org/10.1186/1743-0003-9-47 Text en Copyright ©2012 Lau et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Lau, Troy M Gwin, Joseph T McDowell, Kaleb G Ferris, Daniel P Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion |
title | Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion |
title_full | Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion |
title_fullStr | Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion |
title_full_unstemmed | Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion |
title_short | Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion |
title_sort | weighted phase lag index stability as an artifact resistant measure to detect cognitive eeg activity during locomotion |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488562/ https://www.ncbi.nlm.nih.gov/pubmed/22828128 http://dx.doi.org/10.1186/1743-0003-9-47 |
work_keys_str_mv | AT lautroym weightedphaselagindexstabilityasanartifactresistantmeasuretodetectcognitiveeegactivityduringlocomotion AT gwinjosepht weightedphaselagindexstabilityasanartifactresistantmeasuretodetectcognitiveeegactivityduringlocomotion AT mcdowellkalebg weightedphaselagindexstabilityasanartifactresistantmeasuretodetectcognitiveeegactivityduringlocomotion AT ferrisdanielp weightedphaselagindexstabilityasanartifactresistantmeasuretodetectcognitiveeegactivityduringlocomotion |