Cargando…
A cross-validation scheme for machine learning algorithms in shotgun proteomics
Peptides are routinely identified from mass spectrometry-based proteomics experiments by matching observed spectra to peptides derived from protein databases. The error rates of these identifications can be estimated by target-decoy analysis, which involves matching spectra to shuffled or reversed p...
Autores principales: | Granholm, Viktor, Noble, William Stafford, Käll, Lukas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489528/ https://www.ncbi.nlm.nih.gov/pubmed/23176259 http://dx.doi.org/10.1186/1471-2105-13-S16-S3 |
Ejemplares similares
-
Interpretation
of the DOME Recommendations for Machine
Learning in Proteomics and Metabolomics
por: Palmblad, Magnus, et al.
Publicado: (2022) -
Focus on the spectra that matter by clustering of quantification data in shotgun proteomics
por: The, Matthew, et al.
Publicado: (2020) -
On the Importance of Well-Calibrated
Scores for Identifying
Shotgun Proteomics Spectra
por: Keich, Uri, et al.
Publicado: (2014) -
Correction to
“On the Importance of Well-Calibrated
Scores for Identifying Shotgun Proteomics Spectra”
por: Keich, Uri, et al.
Publicado: (2016) -
Improved False
Discovery Rate Estimation
Procedure for Shotgun
Proteomics
por: Keich, Uri, et al.
Publicado: (2015)