Cargando…
Normalization and missing value imputation for label-free LC-MS analysis
Shotgun proteomic data are affected by a variety of known and unknown systematic biases as well as high proportions of missing values. Typically, normalization is performed in an attempt to remove systematic biases from the data before statistical inference, sometimes followed by missing value imput...
Autores principales: | Karpievitch, Yuliya V, Dabney, Alan R, Smith, Richard D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489534/ https://www.ncbi.nlm.nih.gov/pubmed/23176322 http://dx.doi.org/10.1186/1471-2105-13-S16-S5 |
Ejemplares similares
-
Metabolomics Data Normalization with EigenMS
por: Karpievitch, Yuliya V., et al.
Publicado: (2014) -
MsImpute: Estimation of Missing Peptide Intensity Data in Label-Free Quantitative Mass Spectrometry
por: Hediyeh-Zadeh, Soroor, et al.
Publicado: (2023) -
A comparative study of evaluating missing value imputation methods in label-free proteomics
por: Jin, Liang, et al.
Publicado: (2021) -
Assessment of label-free quantification and missing value imputation for proteomics in non-human primates
por: Hamid, Zeeshan, et al.
Publicado: (2022) -
Label-free LC–MS/MS quantitative analysis of aqueous humor from keratoconic and normal eyes
por: Soria, Javier, et al.
Publicado: (2015)