Cargando…
Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation
Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological expe...
Autores principales: | Dura-Bernal, Salvador, Wennekers, Thomas, Denham, Susan L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489785/ https://www.ncbi.nlm.nih.gov/pubmed/23139765 http://dx.doi.org/10.1371/journal.pone.0048216 |
Ejemplares similares
-
A hierarchical model of vision (HMAX) can also recognize speech
por: Roos, Matthew J, et al.
Publicado: (2014) -
Sparsity-Regularized HMAX for Visual Recognition
por: Hu, Xiaolin, et al.
Publicado: (2014) -
Enhanced HMAX model with feedforward feature learning for multiclass categorization
por: Li, Yinlin, et al.
Publicado: (2015) -
Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation
por: Balaguer-Ballester, Emili, et al.
Publicado: (2009) -
Shaping the Cortical Landscape: Functions and Mechanisms of Top-Down Cortical Feedback Pathways
por: Zagha, Edward
Publicado: (2020)