Cargando…
Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle
Experimental studies suggest that prolonged trunk flexion reduces passive support of the spine. To understand alterations of the synergy between active and passive tissues following such loadings, several studies have assessed the time-dependent behavior of passive tissues including those within spi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489838/ https://www.ncbi.nlm.nih.gov/pubmed/23144913 http://dx.doi.org/10.1371/journal.pone.0048625 |
_version_ | 1782248795160969216 |
---|---|
author | Toosizadeh, Nima Nussbaum, Maury A. Bazrgari, Babak Madigan, Michael L. |
author_facet | Toosizadeh, Nima Nussbaum, Maury A. Bazrgari, Babak Madigan, Michael L. |
author_sort | Toosizadeh, Nima |
collection | PubMed |
description | Experimental studies suggest that prolonged trunk flexion reduces passive support of the spine. To understand alterations of the synergy between active and passive tissues following such loadings, several studies have assessed the time-dependent behavior of passive tissues including those within spinal motion segments and muscles. Yet, there remain limitations regarding load-relaxation of the lumbar spine in response to flexion exposures and the influence of different flexion angles. Ten healthy participants were exposed for 16 min to each of five magnitudes of lumbar flexion specified relative to individual flexion-relaxation angles (i.e., 30, 40, 60, 80, and 100%), during which lumbar flexion angle and trunk moment were recorded. Outcome measures were initial trunk moment, moment drop, parameters of four viscoelastic models (i.e., Standard Linear Solid model, the Prony Series, Schapery's Theory, and the Modified Superposition Method), and changes in neutral zone and viscoelastic state following exposure. There were significant effects of flexion angle on initial moment, moment drop, changes in normalized neutral zone, and some parameters of the Standard Linear Solid model. Initial moment, moment drop, and changes in normalized neutral zone increased exponentially with flexion angle. Kelvin-solid models produced better predictions of temporal behaviors. Observed responses to trunk flexion suggest nonlinearity in viscoelastic properties, and which likely reflected viscoelastic behaviors of spinal (lumbar) motion segments. Flexion-induced changes in viscous properties and neutral zone imply an increase in internal loads and perhaps increased risk of low back disorders. Kelvin-solid models, especially the Prony Series model appeared to be more effective at modeling load-relaxation of the trunk. |
format | Online Article Text |
id | pubmed-3489838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34898382012-11-09 Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle Toosizadeh, Nima Nussbaum, Maury A. Bazrgari, Babak Madigan, Michael L. PLoS One Research Article Experimental studies suggest that prolonged trunk flexion reduces passive support of the spine. To understand alterations of the synergy between active and passive tissues following such loadings, several studies have assessed the time-dependent behavior of passive tissues including those within spinal motion segments and muscles. Yet, there remain limitations regarding load-relaxation of the lumbar spine in response to flexion exposures and the influence of different flexion angles. Ten healthy participants were exposed for 16 min to each of five magnitudes of lumbar flexion specified relative to individual flexion-relaxation angles (i.e., 30, 40, 60, 80, and 100%), during which lumbar flexion angle and trunk moment were recorded. Outcome measures were initial trunk moment, moment drop, parameters of four viscoelastic models (i.e., Standard Linear Solid model, the Prony Series, Schapery's Theory, and the Modified Superposition Method), and changes in neutral zone and viscoelastic state following exposure. There were significant effects of flexion angle on initial moment, moment drop, changes in normalized neutral zone, and some parameters of the Standard Linear Solid model. Initial moment, moment drop, and changes in normalized neutral zone increased exponentially with flexion angle. Kelvin-solid models produced better predictions of temporal behaviors. Observed responses to trunk flexion suggest nonlinearity in viscoelastic properties, and which likely reflected viscoelastic behaviors of spinal (lumbar) motion segments. Flexion-induced changes in viscous properties and neutral zone imply an increase in internal loads and perhaps increased risk of low back disorders. Kelvin-solid models, especially the Prony Series model appeared to be more effective at modeling load-relaxation of the trunk. Public Library of Science 2012-11-05 /pmc/articles/PMC3489838/ /pubmed/23144913 http://dx.doi.org/10.1371/journal.pone.0048625 Text en © 2012 Toosizadeh et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Toosizadeh, Nima Nussbaum, Maury A. Bazrgari, Babak Madigan, Michael L. Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle |
title | Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle |
title_full | Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle |
title_fullStr | Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle |
title_full_unstemmed | Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle |
title_short | Load-Relaxation Properties of the Human Trunk in Response to Prolonged Flexion: Measuring and Modeling the Effect of Flexion Angle |
title_sort | load-relaxation properties of the human trunk in response to prolonged flexion: measuring and modeling the effect of flexion angle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489838/ https://www.ncbi.nlm.nih.gov/pubmed/23144913 http://dx.doi.org/10.1371/journal.pone.0048625 |
work_keys_str_mv | AT toosizadehnima loadrelaxationpropertiesofthehumantrunkinresponsetoprolongedflexionmeasuringandmodelingtheeffectofflexionangle AT nussbaummaurya loadrelaxationpropertiesofthehumantrunkinresponsetoprolongedflexionmeasuringandmodelingtheeffectofflexionangle AT bazrgaribabak loadrelaxationpropertiesofthehumantrunkinresponsetoprolongedflexionmeasuringandmodelingtheeffectofflexionangle AT madiganmichaell loadrelaxationpropertiesofthehumantrunkinresponsetoprolongedflexionmeasuringandmodelingtheeffectofflexionangle |