Cargando…
Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide
BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2)) tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, cha...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489910/ https://www.ncbi.nlm.nih.gov/pubmed/23139743 http://dx.doi.org/10.1371/journal.pone.0047443 |
_version_ | 1782248812045139968 |
---|---|
author | Mutch, W. Alan C. Mandell, Daniel M. Fisher, Joseph A. Mikulis, David J. Crawley, Adrian P. Pucci, Olivia Duffin, James |
author_facet | Mutch, W. Alan C. Mandell, Daniel M. Fisher, Joseph A. Mikulis, David J. Crawley, Adrian P. Pucci, Olivia Duffin, James |
author_sort | Mutch, W. Alan C. |
collection | PubMed |
description | BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2)) tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF) by up to 5–11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2) challenge using a computer-controlled gas blender to administer: i) a square wave change in CO(2) and, ii) a ramp stimulus, consisting of a continuously graded change in CO(2) over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI). METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion) and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2). Cerebrovascular reactivity (CVR) maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2), voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA) maps of the processed raw BOLD signal per voxel over the same CO(2) range were generated. Regions of BOLD signal decrease with increased CO(2) (coded blue) were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue) indicative of anti-persistent noise. While ‘blue’ CVR maps remained essentially stable over the time of analysis, ‘blue’ DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as well as global brain stress test. |
format | Online Article Text |
id | pubmed-3489910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34899102012-11-08 Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide Mutch, W. Alan C. Mandell, Daniel M. Fisher, Joseph A. Mikulis, David J. Crawley, Adrian P. Pucci, Olivia Duffin, James PLoS One Research Article BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2)) tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF) by up to 5–11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2) challenge using a computer-controlled gas blender to administer: i) a square wave change in CO(2) and, ii) a ramp stimulus, consisting of a continuously graded change in CO(2) over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI). METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion) and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2). Cerebrovascular reactivity (CVR) maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2), voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA) maps of the processed raw BOLD signal per voxel over the same CO(2) range were generated. Regions of BOLD signal decrease with increased CO(2) (coded blue) were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue) indicative of anti-persistent noise. While ‘blue’ CVR maps remained essentially stable over the time of analysis, ‘blue’ DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as well as global brain stress test. Public Library of Science 2012-11-05 /pmc/articles/PMC3489910/ /pubmed/23139743 http://dx.doi.org/10.1371/journal.pone.0047443 Text en © 2012 Mutch et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mutch, W. Alan C. Mandell, Daniel M. Fisher, Joseph A. Mikulis, David J. Crawley, Adrian P. Pucci, Olivia Duffin, James Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide |
title | Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide |
title_full | Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide |
title_fullStr | Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide |
title_full_unstemmed | Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide |
title_short | Approaches to Brain Stress Testing: BOLD Magnetic Resonance Imaging with Computer-Controlled Delivery of Carbon Dioxide |
title_sort | approaches to brain stress testing: bold magnetic resonance imaging with computer-controlled delivery of carbon dioxide |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489910/ https://www.ncbi.nlm.nih.gov/pubmed/23139743 http://dx.doi.org/10.1371/journal.pone.0047443 |
work_keys_str_mv | AT mutchwalanc approachestobrainstresstestingboldmagneticresonanceimagingwithcomputercontrolleddeliveryofcarbondioxide AT mandelldanielm approachestobrainstresstestingboldmagneticresonanceimagingwithcomputercontrolleddeliveryofcarbondioxide AT fisherjosepha approachestobrainstresstestingboldmagneticresonanceimagingwithcomputercontrolleddeliveryofcarbondioxide AT mikulisdavidj approachestobrainstresstestingboldmagneticresonanceimagingwithcomputercontrolleddeliveryofcarbondioxide AT crawleyadrianp approachestobrainstresstestingboldmagneticresonanceimagingwithcomputercontrolleddeliveryofcarbondioxide AT pucciolivia approachestobrainstresstestingboldmagneticresonanceimagingwithcomputercontrolleddeliveryofcarbondioxide AT duffinjames approachestobrainstresstestingboldmagneticresonanceimagingwithcomputercontrolleddeliveryofcarbondioxide |