Cargando…
Microfluidic Device for the Selective Chemical Stimulation of Neurons and Characterization of Peptide Release with Mass Spectrometry
[Image: see text] Neuropeptides are synthesized in and released from neurons and are involved in a wide range of physiological processes, including temperature homeostasis, learning, memory, and disease. When working with sparse neuronal networks, the ability to collect and characterize small sample...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2012
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490451/ https://www.ncbi.nlm.nih.gov/pubmed/23004687 http://dx.doi.org/10.1021/ac302283u |
_version_ | 1782248845812432896 |
---|---|
author | Croushore, Callie A. Supharoek, Sam-ang Lee, Chang Young Jakmunee, Jaroon Sweedler, Jonathan V. |
author_facet | Croushore, Callie A. Supharoek, Sam-ang Lee, Chang Young Jakmunee, Jaroon Sweedler, Jonathan V. |
author_sort | Croushore, Callie A. |
collection | PubMed |
description | [Image: see text] Neuropeptides are synthesized in and released from neurons and are involved in a wide range of physiological processes, including temperature homeostasis, learning, memory, and disease. When working with sparse neuronal networks, the ability to collect and characterize small sample volumes is important as neurons often release only a small proportion of their mass-limited content. Microfluidic systems are well suited for the study of neuropeptides. They offer the ability to control and manipulate the extracellular environment and small sample volumes, thereby reducing the dilution of peptides following release. We present an approach for the culture and stimulation of a neuronal network within a microfluidic device, subsequent collection of the released peptides, and their detection via mass spectrometry. The system employs microvalve-controlled stimulation channels to selectively stimulate a low-density neuronal culture, allowing us to determine the temporal onset of peptide release. Released peptides from the well-characterized, peptidergic bag cell neurons of Aplysia californica were collected and their temporal pattern of release was characterized with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We show a robust difference in the timing of release for chemical solutions containing elevated K(+) (7 ± 3 min), when compared to insulin (19 ± 7 min) (p < 0.000 01). |
format | Online Article Text |
id | pubmed-3490451 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-34904512012-11-07 Microfluidic Device for the Selective Chemical Stimulation of Neurons and Characterization of Peptide Release with Mass Spectrometry Croushore, Callie A. Supharoek, Sam-ang Lee, Chang Young Jakmunee, Jaroon Sweedler, Jonathan V. Anal Chem [Image: see text] Neuropeptides are synthesized in and released from neurons and are involved in a wide range of physiological processes, including temperature homeostasis, learning, memory, and disease. When working with sparse neuronal networks, the ability to collect and characterize small sample volumes is important as neurons often release only a small proportion of their mass-limited content. Microfluidic systems are well suited for the study of neuropeptides. They offer the ability to control and manipulate the extracellular environment and small sample volumes, thereby reducing the dilution of peptides following release. We present an approach for the culture and stimulation of a neuronal network within a microfluidic device, subsequent collection of the released peptides, and their detection via mass spectrometry. The system employs microvalve-controlled stimulation channels to selectively stimulate a low-density neuronal culture, allowing us to determine the temporal onset of peptide release. Released peptides from the well-characterized, peptidergic bag cell neurons of Aplysia californica were collected and their temporal pattern of release was characterized with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We show a robust difference in the timing of release for chemical solutions containing elevated K(+) (7 ± 3 min), when compared to insulin (19 ± 7 min) (p < 0.000 01). American Chemical Society 2012-09-24 2012-11-06 /pmc/articles/PMC3490451/ /pubmed/23004687 http://dx.doi.org/10.1021/ac302283u Text en Copyright © 2012 American Chemical Society http://pubs.acs.org This is an open-access article distributed under the ACS AuthorChoice Terms & Conditions. Any use of this article, must conform to the terms of that license which are available at http://pubs.acs.org. |
spellingShingle | Croushore, Callie A. Supharoek, Sam-ang Lee, Chang Young Jakmunee, Jaroon Sweedler, Jonathan V. Microfluidic Device for the Selective Chemical Stimulation of Neurons and Characterization of Peptide Release with Mass Spectrometry |
title | Microfluidic Device for
the Selective Chemical Stimulation
of Neurons and Characterization of Peptide Release with Mass Spectrometry |
title_full | Microfluidic Device for
the Selective Chemical Stimulation
of Neurons and Characterization of Peptide Release with Mass Spectrometry |
title_fullStr | Microfluidic Device for
the Selective Chemical Stimulation
of Neurons and Characterization of Peptide Release with Mass Spectrometry |
title_full_unstemmed | Microfluidic Device for
the Selective Chemical Stimulation
of Neurons and Characterization of Peptide Release with Mass Spectrometry |
title_short | Microfluidic Device for
the Selective Chemical Stimulation
of Neurons and Characterization of Peptide Release with Mass Spectrometry |
title_sort | microfluidic device for
the selective chemical stimulation
of neurons and characterization of peptide release with mass spectrometry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490451/ https://www.ncbi.nlm.nih.gov/pubmed/23004687 http://dx.doi.org/10.1021/ac302283u |
work_keys_str_mv | AT croushorecalliea microfluidicdevicefortheselectivechemicalstimulationofneuronsandcharacterizationofpeptidereleasewithmassspectrometry AT supharoeksamang microfluidicdevicefortheselectivechemicalstimulationofneuronsandcharacterizationofpeptidereleasewithmassspectrometry AT leechangyoung microfluidicdevicefortheselectivechemicalstimulationofneuronsandcharacterizationofpeptidereleasewithmassspectrometry AT jakmuneejaroon microfluidicdevicefortheselectivechemicalstimulationofneuronsandcharacterizationofpeptidereleasewithmassspectrometry AT sweedlerjonathanv microfluidicdevicefortheselectivechemicalstimulationofneuronsandcharacterizationofpeptidereleasewithmassspectrometry |