Cargando…
Likelihood based observability analysis and confidence intervals for predictions of dynamic models
BACKGROUND: Predicting a system’s behavior based on a mathematical model is a primary task in Systems Biology. If the model parameters are estimated from experimental data, the parameter uncertainty has to be translated into confidence intervals for model predictions. For dynamic models of biochemic...
Autores principales: | Kreutz, Clemens, Raue, Andreas, Timmer, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490710/ https://www.ncbi.nlm.nih.gov/pubmed/22947028 http://dx.doi.org/10.1186/1752-0509-6-120 |
Ejemplares similares
-
Driving the Model to Its Limit: Profile Likelihood Based Model Reduction
por: Maiwald, Tim, et al.
Publicado: (2016) -
Optimal Experimental Design Based on Two-Dimensional Likelihood Profiles
por: Litwin, Tim, et al.
Publicado: (2022) -
Estimating confidence intervals in predicted responses for oscillatory biological models
por: St John, Peter C, et al.
Publicado: (2013) -
Likelihood-ratio test statistic for the finite-sample case in nonlinear ordinary differential equation models
por: Tönsing, Christian, et al.
Publicado: (2023) -
Experimental Design for Parameter Estimation of Gene Regulatory Networks
por: Steiert, Bernhard, et al.
Publicado: (2012)