Cargando…
Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art
BACKGROUND: RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as...
Autores principales: | Walia, Rasna R, Caragea, Cornelia, Lewis, Benjamin A, Towfic, Fadi, Terribilini, Michael, El-Manzalawy, Yasser, Dobbs, Drena, Honavar, Vasant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490755/ https://www.ncbi.nlm.nih.gov/pubmed/22574904 http://dx.doi.org/10.1186/1471-2105-13-89 |
Ejemplares similares
-
RNABindRPlus: A Predictor that Combines Machine Learning and Sequence Homology-Based Methods to Improve the Reliability of Predicted RNA-Binding Residues in Proteins
por: Walia, Rasna R., et al.
Publicado: (2014) -
PRIDB: a protein–RNA interface database
por: Lewis, Benjamin A., et al.
Publicado: (2011) -
Predicting protein-protein interface residues using local surface structural similarity
por: Jordan, Rafael A, et al.
Publicado: (2012) -
Partner‐specific prediction of RNA‐binding residues in proteins: A critical assessment
por: Jung, Yong, et al.
Publicado: (2018) -
On Evaluating MHC-II Binding Peptide Prediction Methods
por: EL-Manzalawy, Yasser, et al.
Publicado: (2008)