Cargando…

Identification of the radicals formed in the reactions of some endogenous photosensitizers with oleic acid under the UVA irradiation

Electron spin resonance measurements were performed for the reactions of some endogenous photosensitizers (flavin mononucleotide or flavin adenine dinucleotide or folic acid or β-nicotinamide adenine dinucleotide or β-nicotinamide adenine dinucleotide phosphate or pyridoxal-5'-phosphate or uroc...

Descripción completa

Detalles Bibliográficos
Autores principales: Mori, Hiroko, Iwahashi, Hideo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491240/
https://www.ncbi.nlm.nih.gov/pubmed/23170043
http://dx.doi.org/10.3164/jcbn.11-34
Descripción
Sumario:Electron spin resonance measurements were performed for the reactions of some endogenous photosensitizers (flavin mononucleotide or flavin adenine dinucleotide or folic acid or β-nicotinamide adenine dinucleotide or β-nicotinamide adenine dinucleotide phosphate or pyridoxal-5'-phosphate or urocanic acid) with oleic acid under the ultraviolet light A irradiation using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as a spin trap reagent. Of the endogenous photosensitizers, prominent electron spin resonance signals (α(N) = 1.58 mT and α(H)β = 0.26 mT) were observed for the reaction mixture of flavin mononucleotide (or flavin adenine dinucleotide or folic acid), suggesting that radical species form in the reaction mixtures. Singlet oxygen seems to participate in the formation of the radicals because the electron spin resonance peak heights increased for the reactions in D(2)O to a great extent. A high performance liquid chromatography-electron spin resonance-mass spectrometry was employed to identify the radicals formed in the reactions of the endogenous photosensitizers (flavin mononucleotide or flavin adenine dinucleotide or folic acid) with oleic acid under the ultraviolet light A irradiation. The high performance liquid chromatography-electron spin resonance-mass spectrometry analyses showed that 7-carboxyheptyl and 1-(3-carboxypropyl)-4-hydroxybutyl radicals form in the reaction mixture of flavin mononucleotide (or flavin adenine dinucleotide or folic acid).