Cargando…
Using Mobile Phones for Activity Recognition in Parkinson’s Patients
Mobile phones with built-in accelerometers promise a convenient, objective way to quantify everyday movements and classify those movements into activities. Using accelerometer data we estimate the following activities of 18 healthy subjects and eight patients with Parkinson’s disease: walking, stand...
Autores principales: | Albert, Mark V., Toledo, Santiago, Shapiro, Mark, Kording, Konrad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491315/ https://www.ncbi.nlm.nih.gov/pubmed/23162528 http://dx.doi.org/10.3389/fneur.2012.00158 |
Ejemplares similares
-
Fall Classification by Machine Learning Using Mobile Phones
por: Albert, Mark V., et al.
Publicado: (2012) -
Measuring Generalization of Visuomotor Perturbations in Wrist Movements Using Mobile Phones
por: Fernandes, Hugo Liberal, et al.
Publicado: (2011) -
Monitoring Functional Capability of Individuals with Lower Limb Amputations Using Mobile Phones
por: Albert, Mark V., et al.
Publicado: (2013) -
Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting
por: O'Brien, Megan K, et al.
Publicado: (2017) -
Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017)