Cargando…
Modeling gene expression using chromatin features in various cellular contexts
BACKGROUND: Previous work has demonstrated that chromatin feature levels correlate with gene expression. The ENCODE project enables us to further explore this relationship using an unprecedented volume of data. Expression levels from more than 100,000 promoters were measured using a variety of high-...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491397/ https://www.ncbi.nlm.nih.gov/pubmed/22950368 http://dx.doi.org/10.1186/gb-2012-13-9-r53 |
_version_ | 1782248987558936576 |
---|---|
author | Dong, Xianjun Greven, Melissa C Kundaje, Anshul Djebali, Sarah Brown, James B Cheng, Chao Gingeras, Thomas R Gerstein, Mark Guigó, Roderic Birney, Ewan Weng, Zhiping |
author_facet | Dong, Xianjun Greven, Melissa C Kundaje, Anshul Djebali, Sarah Brown, James B Cheng, Chao Gingeras, Thomas R Gerstein, Mark Guigó, Roderic Birney, Ewan Weng, Zhiping |
author_sort | Dong, Xianjun |
collection | PubMed |
description | BACKGROUND: Previous work has demonstrated that chromatin feature levels correlate with gene expression. The ENCODE project enables us to further explore this relationship using an unprecedented volume of data. Expression levels from more than 100,000 promoters were measured using a variety of high-throughput techniques applied to RNA extracted by different protocols from different cellular compartments of several human cell lines. ENCODE also generated the genome-wide mapping of eleven histone marks, one histone variant, and DNase I hypersensitivity sites in seven cell lines. RESULTS: We built a novel quantitative model to study the relationship between chromatin features and expression levels. Our study not only confirms that the general relationships found in previous studies hold across various cell lines, but also makes new suggestions about the relationship between chromatin features and gene expression levels. We found that expression status and expression levels can be predicted by different groups of chromatin features, both with high accuracy. We also found that expression levels measured by CAGE are better predicted than by RNA-PET or RNA-Seq, and different categories of chromatin features are the most predictive of expression for different RNA measurement methods. Additionally, PolyA+ RNA is overall more predictable than PolyA- RNA among different cell compartments, and PolyA+ cytosolic RNA measured with RNA-Seq is more predictable than PolyA+ nuclear RNA, while the opposite is true for PolyA- RNA. CONCLUSIONS: Our study provides new insights into transcriptional regulation by analyzing chromatin features in different cellular contexts. |
format | Online Article Text |
id | pubmed-3491397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34913972012-11-07 Modeling gene expression using chromatin features in various cellular contexts Dong, Xianjun Greven, Melissa C Kundaje, Anshul Djebali, Sarah Brown, James B Cheng, Chao Gingeras, Thomas R Gerstein, Mark Guigó, Roderic Birney, Ewan Weng, Zhiping Genome Biol Research BACKGROUND: Previous work has demonstrated that chromatin feature levels correlate with gene expression. The ENCODE project enables us to further explore this relationship using an unprecedented volume of data. Expression levels from more than 100,000 promoters were measured using a variety of high-throughput techniques applied to RNA extracted by different protocols from different cellular compartments of several human cell lines. ENCODE also generated the genome-wide mapping of eleven histone marks, one histone variant, and DNase I hypersensitivity sites in seven cell lines. RESULTS: We built a novel quantitative model to study the relationship between chromatin features and expression levels. Our study not only confirms that the general relationships found in previous studies hold across various cell lines, but also makes new suggestions about the relationship between chromatin features and gene expression levels. We found that expression status and expression levels can be predicted by different groups of chromatin features, both with high accuracy. We also found that expression levels measured by CAGE are better predicted than by RNA-PET or RNA-Seq, and different categories of chromatin features are the most predictive of expression for different RNA measurement methods. Additionally, PolyA+ RNA is overall more predictable than PolyA- RNA among different cell compartments, and PolyA+ cytosolic RNA measured with RNA-Seq is more predictable than PolyA+ nuclear RNA, while the opposite is true for PolyA- RNA. CONCLUSIONS: Our study provides new insights into transcriptional regulation by analyzing chromatin features in different cellular contexts. BioMed Central 2012 2012-09-05 /pmc/articles/PMC3491397/ /pubmed/22950368 http://dx.doi.org/10.1186/gb-2012-13-9-r53 Text en Copyright ©2012 Dong et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited |
spellingShingle | Research Dong, Xianjun Greven, Melissa C Kundaje, Anshul Djebali, Sarah Brown, James B Cheng, Chao Gingeras, Thomas R Gerstein, Mark Guigó, Roderic Birney, Ewan Weng, Zhiping Modeling gene expression using chromatin features in various cellular contexts |
title | Modeling gene expression using chromatin features in various cellular contexts |
title_full | Modeling gene expression using chromatin features in various cellular contexts |
title_fullStr | Modeling gene expression using chromatin features in various cellular contexts |
title_full_unstemmed | Modeling gene expression using chromatin features in various cellular contexts |
title_short | Modeling gene expression using chromatin features in various cellular contexts |
title_sort | modeling gene expression using chromatin features in various cellular contexts |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491397/ https://www.ncbi.nlm.nih.gov/pubmed/22950368 http://dx.doi.org/10.1186/gb-2012-13-9-r53 |
work_keys_str_mv | AT dongxianjun modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT grevenmelissac modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT kundajeanshul modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT djebalisarah modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT brownjamesb modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT chengchao modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT gingerasthomasr modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT gersteinmark modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT guigoroderic modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT birneyewan modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts AT wengzhiping modelinggeneexpressionusingchromatinfeaturesinvariouscellularcontexts |