Cargando…
Osseous integration in porous tantalum implants
Porous tantalum is a biomaterial that was recently introduced in orthopedics in order to overcome problems related to implant loosening. It is found to have osteoconductive, and possibly, osteoinductive properties hence useful in difficult cases with severe bone defects. So, it is of great interest...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491782/ https://www.ncbi.nlm.nih.gov/pubmed/23162141 http://dx.doi.org/10.4103/0019-5413.101032 |
Sumario: | Porous tantalum is a biomaterial that was recently introduced in orthopedics in order to overcome problems related to implant loosening. It is found to have osteoconductive, and possibly, osteoinductive properties hence useful in difficult cases with severe bone defects. So, it is of great interest to shed light on the mechanisms through which this material leads to new bone formation, after being implanted. Porous tantalum is biologically relatively inert, with restricted bonding capacity to the bone is restricted. In order to overcome this obstacle, it undergoes thermal processing in an alkaline environment. This process leads to extensive hydroxyapatite formation on its surface, and thus, to better integration of porous tantalum implants. Apart from this, new bone tissue formation occurs inside the pores of the porous tantalum after its implantation and this new bone retains the characteristics of the normal bone, that is, bone remodeling and Haversian systems formation. This finding is enhanced by the observation that porous tantalum is an appropriate substrate for osteoblast adherence, proliferation, and differentiation. Furthermore, the finding that osteoblasts derived from old women (> 60 years old) and cultivated on porous tantalum may grow faster than osteoblasts taken from younger women (< 45 years old) and cultivated on other substrates, can partially explain porous tantalum's good performance in cases of patients with severe bone defects. In conclusion, porous tantalum's chemical and mechanical properties are those that probably define the already noticed good performance of this material. However, further research is needed to totally clarify the mechanisms. |
---|