Cargando…

Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis

Background: Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children’s neurodevelopment. Objective: We performed a systematic review and meta-analysis of published studies to investigate th...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Anna L., Sun, Guifan, Zhang, Ying, Grandjean, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491930/
https://www.ncbi.nlm.nih.gov/pubmed/22820538
http://dx.doi.org/10.1289/ehp.1104912
_version_ 1782249028694573056
author Choi, Anna L.
Sun, Guifan
Zhang, Ying
Grandjean, Philippe
author_facet Choi, Anna L.
Sun, Guifan
Zhang, Ying
Grandjean, Philippe
author_sort Choi, Anna L.
collection PubMed
description Background: Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children’s neurodevelopment. Objective: We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. Methods: We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg’s funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. Results: The standardized weighted mean difference in IQ score between exposed and reference populations was –0.45 (95% confidence interval: –0.56, –0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. Conclusions: The results support the possibility of an adverse effect of high fluoride exposure on children’s neurodevelopment. Future research should include detailed individual-level information on prenatal exposure, neurobehavioral performance, and covariates for adjustment.
format Online
Article
Text
id pubmed-3491930
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher National Institute of Environmental Health Sciences
record_format MEDLINE/PubMed
spelling pubmed-34919302012-11-08 Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis Choi, Anna L. Sun, Guifan Zhang, Ying Grandjean, Philippe Environ Health Perspect Review Background: Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children’s neurodevelopment. Objective: We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. Methods: We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg’s funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. Results: The standardized weighted mean difference in IQ score between exposed and reference populations was –0.45 (95% confidence interval: –0.56, –0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. Conclusions: The results support the possibility of an adverse effect of high fluoride exposure on children’s neurodevelopment. Future research should include detailed individual-level information on prenatal exposure, neurobehavioral performance, and covariates for adjustment. National Institute of Environmental Health Sciences 2012-07-20 2012-10 /pmc/articles/PMC3491930/ /pubmed/22820538 http://dx.doi.org/10.1289/ehp.1104912 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, ?Reproduced with permission from Environmental Health Perspectives?); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.
spellingShingle Review
Choi, Anna L.
Sun, Guifan
Zhang, Ying
Grandjean, Philippe
Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis
title Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis
title_full Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis
title_fullStr Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis
title_full_unstemmed Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis
title_short Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis
title_sort developmental fluoride neurotoxicity: a systematic review and meta-analysis
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491930/
https://www.ncbi.nlm.nih.gov/pubmed/22820538
http://dx.doi.org/10.1289/ehp.1104912
work_keys_str_mv AT choiannal developmentalfluorideneurotoxicityasystematicreviewandmetaanalysis
AT sunguifan developmentalfluorideneurotoxicityasystematicreviewandmetaanalysis
AT zhangying developmentalfluorideneurotoxicityasystematicreviewandmetaanalysis
AT grandjeanphilippe developmentalfluorideneurotoxicityasystematicreviewandmetaanalysis