Cargando…
Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol
The production of biodiesel results in a concomitant production of crude glycerol (10% w/w). Clostridium pasteurianum can utilize glycerol as sole carbon source and converts it into 1,3-propanediol, ethanol, butanol, and CO(2). Reduced growth and productivities on crude glycerol as compared to techn...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492062/ https://www.ncbi.nlm.nih.gov/pubmed/22901717 http://dx.doi.org/10.1186/2191-0855-2-44 |
_version_ | 1782249047847862272 |
---|---|
author | Jensen, Torbjørn Ølshøj Kvist, Thomas Mikkelsen, Marie Just Westermann, Peter |
author_facet | Jensen, Torbjørn Ølshøj Kvist, Thomas Mikkelsen, Marie Just Westermann, Peter |
author_sort | Jensen, Torbjørn Ølshøj |
collection | PubMed |
description | The production of biodiesel results in a concomitant production of crude glycerol (10% w/w). Clostridium pasteurianum can utilize glycerol as sole carbon source and converts it into 1,3-propanediol, ethanol, butanol, and CO(2). Reduced growth and productivities on crude glycerol as compared to technical grade glycerol have previously been observed. In this study, we applied random mutagenesis mediated by ethane methyl sulfonate (EMS) to develop a mutant strain of C. pasteurianum tolerating high concentrations of crude glycerol. At an initial crude glycerol concentration of 25 g/l the amount of dry cell mass produced by the mutant strain was six times higher than the amount produced by the wild type. Growth of the mutant strain was even detected at an initial crude glycerol concentration of 105 g/l. A pH controlled reactor with in situ removal of butanol by gas-stripping was used to evaluate the performance of the mutant strain. Utilizing stored crude glycerol, the mutant strain showed significantly increased rates compared to the wild type. A maximum glycerol utilization rate of 7.59 g/l/h was observed along with productivities of 1.80 g/l/h and 1.21 g/l/h of butanol and 1,3-PDO, respectively. These rates are higher than what previously has been published for C. pasteurianum growing on technical grade glycerol in fed batch reactors. In addition, high yields of the main products (butanol and 1,3-PDO) were detected and these two products were efficiently separated in two steams using gas-stripping. |
format | Online Article Text |
id | pubmed-3492062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-34920622012-11-08 Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol Jensen, Torbjørn Ølshøj Kvist, Thomas Mikkelsen, Marie Just Westermann, Peter AMB Express Original Article The production of biodiesel results in a concomitant production of crude glycerol (10% w/w). Clostridium pasteurianum can utilize glycerol as sole carbon source and converts it into 1,3-propanediol, ethanol, butanol, and CO(2). Reduced growth and productivities on crude glycerol as compared to technical grade glycerol have previously been observed. In this study, we applied random mutagenesis mediated by ethane methyl sulfonate (EMS) to develop a mutant strain of C. pasteurianum tolerating high concentrations of crude glycerol. At an initial crude glycerol concentration of 25 g/l the amount of dry cell mass produced by the mutant strain was six times higher than the amount produced by the wild type. Growth of the mutant strain was even detected at an initial crude glycerol concentration of 105 g/l. A pH controlled reactor with in situ removal of butanol by gas-stripping was used to evaluate the performance of the mutant strain. Utilizing stored crude glycerol, the mutant strain showed significantly increased rates compared to the wild type. A maximum glycerol utilization rate of 7.59 g/l/h was observed along with productivities of 1.80 g/l/h and 1.21 g/l/h of butanol and 1,3-PDO, respectively. These rates are higher than what previously has been published for C. pasteurianum growing on technical grade glycerol in fed batch reactors. In addition, high yields of the main products (butanol and 1,3-PDO) were detected and these two products were efficiently separated in two steams using gas-stripping. Springer 2012-08-17 /pmc/articles/PMC3492062/ /pubmed/22901717 http://dx.doi.org/10.1186/2191-0855-2-44 Text en Copyright ©2012 Jensen et al.; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Jensen, Torbjørn Ølshøj Kvist, Thomas Mikkelsen, Marie Just Westermann, Peter Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol |
title | Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol |
title_full | Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol |
title_fullStr | Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol |
title_full_unstemmed | Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol |
title_short | Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol |
title_sort | production of 1,3-pdo and butanol by a mutant strain of clostridium pasteurianum with increased tolerance towards crude glycerol |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492062/ https://www.ncbi.nlm.nih.gov/pubmed/22901717 http://dx.doi.org/10.1186/2191-0855-2-44 |
work_keys_str_mv | AT jensentorbjørnølshøj productionof13pdoandbutanolbyamutantstrainofclostridiumpasteurianumwithincreasedtolerancetowardscrudeglycerol AT kvistthomas productionof13pdoandbutanolbyamutantstrainofclostridiumpasteurianumwithincreasedtolerancetowardscrudeglycerol AT mikkelsenmariejust productionof13pdoandbutanolbyamutantstrainofclostridiumpasteurianumwithincreasedtolerancetowardscrudeglycerol AT westermannpeter productionof13pdoandbutanolbyamutantstrainofclostridiumpasteurianumwithincreasedtolerancetowardscrudeglycerol |