Cargando…
Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass
BACKGROUND: Karyotypes can provide information about taxonomic relationships, genetic aberrations, and the evolutionary origins of species. However, differentiation of the tiny chromosomes of switchgrass (Panicum virgatum L.) and creation of a standard karyotype for this bioenergy crop has not been...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492167/ https://www.ncbi.nlm.nih.gov/pubmed/22834676 http://dx.doi.org/10.1186/1471-2229-12-117 |
_version_ | 1782249072574332928 |
---|---|
author | Young, Hugh A Sarath, Gautam Tobias, Christian M |
author_facet | Young, Hugh A Sarath, Gautam Tobias, Christian M |
author_sort | Young, Hugh A |
collection | PubMed |
description | BACKGROUND: Karyotypes can provide information about taxonomic relationships, genetic aberrations, and the evolutionary origins of species. However, differentiation of the tiny chromosomes of switchgrass (Panicum virgatum L.) and creation of a standard karyotype for this bioenergy crop has not been accomplished due to lack of distinguishing features and polyploidy. RESULTS: A cytogenetic study was conducted on a dihaploid individual (2n = 2X = 18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci to chromosomes 7 and 2 respectively. Both a maize CentC and a native switchgrass centromeric repeat (PviCentC) that shared 73% sequence identity demonstrated a strong signal on chromosome 3. However, only the PviCentC probe labeled the centromeres of all chromosomes. Unexpected PviCentC and 5S rDNA hybidization patterns were consistent with severe reduction or total deletion of these repeats in one subgenome. These patterns were maintained in tetraploid and octoploid individuals. The 45S rDNA repeat produced the expected number of loci in dihaploid, tetraploid and octoploid individuals. Differences observed at the 5S rDNA loci between the upland and lowland ecotypes of switchgrass provided a basis for distinguishing these subpopulations. CONCLUSION: Collectively, these results provide a quantitative karyotype of switchgrass chromosomes. FISH analyses indicate genetic divergence between subgenomes and allow for the classification of switchgrass plants belonging to divergent genetic pools. Furthermore, the karyotype structure and cytogenetic analysis of switchgrass provides a framework for future genetic and genomic studies. |
format | Online Article Text |
id | pubmed-3492167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34921672012-11-08 Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass Young, Hugh A Sarath, Gautam Tobias, Christian M BMC Plant Biol Research Article BACKGROUND: Karyotypes can provide information about taxonomic relationships, genetic aberrations, and the evolutionary origins of species. However, differentiation of the tiny chromosomes of switchgrass (Panicum virgatum L.) and creation of a standard karyotype for this bioenergy crop has not been accomplished due to lack of distinguishing features and polyploidy. RESULTS: A cytogenetic study was conducted on a dihaploid individual (2n = 2X = 18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci to chromosomes 7 and 2 respectively. Both a maize CentC and a native switchgrass centromeric repeat (PviCentC) that shared 73% sequence identity demonstrated a strong signal on chromosome 3. However, only the PviCentC probe labeled the centromeres of all chromosomes. Unexpected PviCentC and 5S rDNA hybidization patterns were consistent with severe reduction or total deletion of these repeats in one subgenome. These patterns were maintained in tetraploid and octoploid individuals. The 45S rDNA repeat produced the expected number of loci in dihaploid, tetraploid and octoploid individuals. Differences observed at the 5S rDNA loci between the upland and lowland ecotypes of switchgrass provided a basis for distinguishing these subpopulations. CONCLUSION: Collectively, these results provide a quantitative karyotype of switchgrass chromosomes. FISH analyses indicate genetic divergence between subgenomes and allow for the classification of switchgrass plants belonging to divergent genetic pools. Furthermore, the karyotype structure and cytogenetic analysis of switchgrass provides a framework for future genetic and genomic studies. BioMed Central 2012-07-26 /pmc/articles/PMC3492167/ /pubmed/22834676 http://dx.doi.org/10.1186/1471-2229-12-117 Text en Copyright ©2012 Young et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Young, Hugh A Sarath, Gautam Tobias, Christian M Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass |
title | Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass |
title_full | Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass |
title_fullStr | Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass |
title_full_unstemmed | Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass |
title_short | Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass |
title_sort | karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492167/ https://www.ncbi.nlm.nih.gov/pubmed/22834676 http://dx.doi.org/10.1186/1471-2229-12-117 |
work_keys_str_mv | AT younghugha karyotypevariationisindicativeofsubgenomicandecotypicdifferentiationinswitchgrass AT sarathgautam karyotypevariationisindicativeofsubgenomicandecotypicdifferentiationinswitchgrass AT tobiaschristianm karyotypevariationisindicativeofsubgenomicandecotypicdifferentiationinswitchgrass |