Cargando…
Cohesion Fatigue Explains Why Pharmacological Inhibition of the APC/C Induces a Spindle Checkpoint-Dependent Mitotic Arrest
The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase in response to unattached kinetochores by inhibiting the activity of the Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. Once all the chromosomes have bioriented, SAC signalling is somehow silenced, which allows...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492190/ https://www.ncbi.nlm.nih.gov/pubmed/23145059 http://dx.doi.org/10.1371/journal.pone.0049041 |
Sumario: | The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase in response to unattached kinetochores by inhibiting the activity of the Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. Once all the chromosomes have bioriented, SAC signalling is somehow silenced, which allows progression through mitosis. Recent studies suggest that the APC/C itself participates in SAC silencing by targeting an unknown factor for proteolytic degradation. Key evidence in favour of this model comes from the use of proTAME, a small molecule inhibitor of the APC/C. In cells, proTAME causes a mitotic arrest that is SAC-dependent. Even though this observation comes at odds with the current view that the APC/C acts downstream of the SAC, it was nonetheless argued that these results revealed a role for APC/C activity in SAC silencing. However, we show here that the mitotic arrest induced by proTAME is due to the induction of cohesion fatigue, a phenotype that is caused by the loss of sister chromatid cohesion following a prolonged metaphase. Under these conditions, the SAC is re-activated and APC/C inhibition is maintained independently of proTAME. Therefore, these results provide a simpler explanation for why the proTAME-induced mitotic arrest is also dependent on the SAC. While these observations question the notion that the APC/C is required for SAC silencing, we nevertheless show that APC/C activity does partially contribute to its own release from inhibitory complexes, and importantly, this does not depend on proteasome-mediated degradation. |
---|