Cargando…
Tracking Taphonomic Regimes Using Chemical and Mechanical Damage of Pollen and Spores: An Example from the Triassic–Jurassic Mass Extinction
The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492321/ https://www.ncbi.nlm.nih.gov/pubmed/23145104 http://dx.doi.org/10.1371/journal.pone.0049153 |
Sumario: | The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as mass extinctions, are crucial. In this paper, we have used variations in the frequency of chemical and mechanical sporomorph (pollen and spore) damage as a guide to taphonomic regimes across the Triassic–Jurassic mass extinction (Tr-J; ∼201.3 Ma) at a boundary section at Astartekløft, East Greenland. We find that the frequency of sporomorph damage is extremely variable in samples from this locality. This likely reflects a combination of taxon-specific susceptibility to damage and the mixing of sporomorphs from a mosaic of environments and taphonomic regimes. The stratigraphic interval containing evidence of plant extinction and compositional change in the source vegetation at Astartekløft is not marked by a consistent rise or fall in the frequency of sporomorph damage. This indicates that natural taphonomic regimes did not shift radically during this critical interval. We find no evidence of a consistent relationship between the taxonomic richness of sporomorph assemblages and the frequency of damage among sporomorphs at Astartekløft. This indicates that previously reported patterns of sporomorph richness across the Tr-J at this locality are likely to be robust. Taken together, our results suggest that the patterns of vegetation change at Astartekløft represent a real biological response to environmental change at the Tr-J. |
---|