Cargando…
Identifying Discrete States of a Biological System Using a Novel Step Detection Algorithm
Identification of discrete states is a common task when studying biological systems on microscopic scales. Here, we present a novel step detection algorithm that is ideally suited to locate steplike features separating adjacent plateaus, even if they are smooth and hidden by noise. It can be adjuste...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492383/ https://www.ncbi.nlm.nih.gov/pubmed/23144778 http://dx.doi.org/10.1371/journal.pone.0045896 |
Sumario: | Identification of discrete states is a common task when studying biological systems on microscopic scales. Here, we present a novel step detection algorithm that is ideally suited to locate steplike features separating adjacent plateaus, even if they are smooth and hidden by noise. It can be adjusted to detect very low or narrow steps that cannot be recognized by conventional methods. We demonstrate the applicability of the technique on various experimental data and show strong evidence of sub-10-pN steps in atomic force spectroscopy measurements performed with living lymphocytes. |
---|