Cargando…
A Bayesian Interpretation of the Particle Swarm Optimization and Its Kernel Extension
Particle swarm optimization is a popular method for solving difficult optimization problems. There have been attempts to formulate the method in formal probabilistic or stochastic terms (e.g. bare bones particle swarm) with the aim to achieve more generality and explain the practical behavior of the...
Autor principal: | Andras, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492439/ https://www.ncbi.nlm.nih.gov/pubmed/23144937 http://dx.doi.org/10.1371/journal.pone.0048710 |
Ejemplares similares
-
An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine
por: Zhang, Yudong, et al.
Publicado: (2013) -
Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis
por: Segera, Davies, et al.
Publicado: (2019) -
The Extension of Phase Correlation to Image Perspective Distortions Based on Particle Swarm Optimization
por: Wan, Xue, et al.
Publicado: (2019) -
A Lyapunov-Based Extension to Particle Swarm Dynamics for Continuous Function Optimization
por: Bhattacharya, Sayantani, et al.
Publicado: (2009) -
Binary Restructuring Particle Swarm Optimization and Its Application
por: Zhu, Jian, et al.
Publicado: (2023)