Cargando…
Phenotypic plasticity alone cannot explain climate-induced change in avian migration timing
Recent climate change has been linked to shifts in the timing of life-cycle events in many organisms, but there is debate over the degree to which phenological changes are caused by evolved genetic responses of populations or by phenotypic plasticity of individuals. We estimated plasticity of spring...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492770/ https://www.ncbi.nlm.nih.gov/pubmed/23145329 http://dx.doi.org/10.1002/ece3.367 |
Sumario: | Recent climate change has been linked to shifts in the timing of life-cycle events in many organisms, but there is debate over the degree to which phenological changes are caused by evolved genetic responses of populations or by phenotypic plasticity of individuals. We estimated plasticity of spring arrival date in 27 species of bird that breed in the vicinity of an observatory in eastern North America. For 2441 individuals detected in multiple years, arrival occurred earlier during warm years, especially in species that migrate short distances. Phenotypic plasticity averaged −0.93 days °C(−1) ± 0.70 (95% CI). However, plasticity accounted for only 13–25% of the climate-induced trend in phenology observed over 46 years. Although our approach probably underestimates the full scope of plasticity, the data suggest that part of the response to environmental change has been caused by microevolution. The estimated evolutionary rates are plausible (0.016 haldanes). |
---|