Cargando…
TRESK gene recombinant adenovirus vector inhibits capsaicin-mediated substance P release from cultured rat dorsal root ganglion neurons
The present study was conducted to determine whether the activation of TRESK in the dorsal root ganglion (DRG) by the TRESK gene recombinant adenovirus vector inhibits the capsaicin-evoked substance P (SP) release using a radioimmunoassay. TRESK is an outwardly rectifying K(+) current channel that c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493032/ https://www.ncbi.nlm.nih.gov/pubmed/22307830 http://dx.doi.org/10.3892/mmr.2012.778 |
Sumario: | The present study was conducted to determine whether the activation of TRESK in the dorsal root ganglion (DRG) by the TRESK gene recombinant adenovirus vector inhibits the capsaicin-evoked substance P (SP) release using a radioimmunoassay. TRESK is an outwardly rectifying K(+) current channel that contributes to the resting potential and is the most important background potassium channel in DRG. Previous studies have shown that neuropathic pain (NP) is closely related to the regulation of certain potassium channels in DRG neurons, while DRG-released SP is important in the peripheral mechanism of NP. In the present study, the TRESK gene adenovirus vector significantly enhanced the TRESK mRNA and protein of the cultured rat DRG neurons. Radioimmunoassay analysis revealed that the capsaicin-mediated SP release was significantly inhibited by the TRESK gene recombinant adenovirus vector in rat DRG neurons. These findings suggest that TRESK plays a role in adjusting the release of SP in DRG, which is related to NP. |
---|