Cargando…

Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells

The acute administration of ethanol to intestinal epithelial cells causes increased intestinal permeability and the translocation of endotoxins. The changes caused by ethanol in intestinal cells may be related to oxidative stress and DNA damage. However, DNA damage and repair-related molecules which...

Descripción completa

Detalles Bibliográficos
Autores principales: PARK, SUNG CHUL, LIM, JI-YOUN, JEEN, YOON TAE, KEUM, BORA, SEO, YEON SEOK, KIM, YONG SIK, LEE, SUNG JOON, LEE, HONG SIK, CHUN, HOON JAI, UM, SOON HO, KIM, CHANG DUCK, RYU, HO SANG, SUL, DONGGEUN, OH, EUNHA
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493059/
https://www.ncbi.nlm.nih.gov/pubmed/22246134
http://dx.doi.org/10.3892/mmr.2012.754
_version_ 1782249207681253376
author PARK, SUNG CHUL
LIM, JI-YOUN
JEEN, YOON TAE
KEUM, BORA
SEO, YEON SEOK
KIM, YONG SIK
LEE, SUNG JOON
LEE, HONG SIK
CHUN, HOON JAI
UM, SOON HO
KIM, CHANG DUCK
RYU, HO SANG
SUL, DONGGEUN
OH, EUNHA
author_facet PARK, SUNG CHUL
LIM, JI-YOUN
JEEN, YOON TAE
KEUM, BORA
SEO, YEON SEOK
KIM, YONG SIK
LEE, SUNG JOON
LEE, HONG SIK
CHUN, HOON JAI
UM, SOON HO
KIM, CHANG DUCK
RYU, HO SANG
SUL, DONGGEUN
OH, EUNHA
author_sort PARK, SUNG CHUL
collection PubMed
description The acute administration of ethanol to intestinal epithelial cells causes increased intestinal permeability and the translocation of endotoxins. The changes caused by ethanol in intestinal cells may be related to oxidative stress and DNA damage. However, DNA damage and repair-related molecules which act against stresses, including ethanol, have not been fully investigated in intestinal cells. Heat shock proteins (Hsps) are involved in the recovery and protection from cell damage and may be associated with DNA repair. Therefore, the aim of our study was to investigate cytotoxicity, DNA damage and the expression of DNA repair-related molecules, antioxidant proteins and Hsps in intestinal cells exposed to ethanol. Human intestinal Caco-2 cells were incubated with 1–8% ethanol for 1 h. Cell viability and DNA damage were determined using the MTT and comet assays, respectively. We measured DNA repair-related molecules, including DNA polymerase β, apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1), growth arrest and DNA damage 45α (GADD45α) and proliferating cell nuclear antigen (PCNA), in Caco-2 cells using western blot analysis. We also measured glutathione peroxidase-1 (GPx-1), peroxiredoxin-1 (PRX-1), superoxide dismutase-2 (SOD-2), Hsp10, Hsp27, Hsp60, heat shock cognate (Hsc)70, Hsp70 and Hsp90. The viability of the Caco-2 cells exposed to ethanol decreased at concentrations ≥7% (P<0.05). The Olive tail moment, indicating DNA damage, increased dose dependently in ≥3% ethanol (P<0.05). Among the DNA repair proteins, the expression of PCNA and APE/Ref-1 increased significantly at 1% ethanol. Antioxidant enzymes, including GPx-1, PRX-1 and SOD-2, had an increased expression at 1% ethanol. Hsp10, Hsp27 and Hsp70 expression also increased significantly at 1% ethanol. In conclusion, the expression of DNA repair molecules, antioxidants and Hsps increased in intestinal Caco-2 cells exposed to low concentrations of ethanol. In particular, PCNA, APE/Ref-1, Hsp10, Hsp27 and Hsp70 were sensitive to low ethanol concentrations, indicating that they may be useful in evaluating the DNA repair and cytoprotective effects of the drug against stress in intestinal cells.
format Online
Article
Text
id pubmed-3493059
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-34930592013-04-01 Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells PARK, SUNG CHUL LIM, JI-YOUN JEEN, YOON TAE KEUM, BORA SEO, YEON SEOK KIM, YONG SIK LEE, SUNG JOON LEE, HONG SIK CHUN, HOON JAI UM, SOON HO KIM, CHANG DUCK RYU, HO SANG SUL, DONGGEUN OH, EUNHA Mol Med Rep Article The acute administration of ethanol to intestinal epithelial cells causes increased intestinal permeability and the translocation of endotoxins. The changes caused by ethanol in intestinal cells may be related to oxidative stress and DNA damage. However, DNA damage and repair-related molecules which act against stresses, including ethanol, have not been fully investigated in intestinal cells. Heat shock proteins (Hsps) are involved in the recovery and protection from cell damage and may be associated with DNA repair. Therefore, the aim of our study was to investigate cytotoxicity, DNA damage and the expression of DNA repair-related molecules, antioxidant proteins and Hsps in intestinal cells exposed to ethanol. Human intestinal Caco-2 cells were incubated with 1–8% ethanol for 1 h. Cell viability and DNA damage were determined using the MTT and comet assays, respectively. We measured DNA repair-related molecules, including DNA polymerase β, apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1), growth arrest and DNA damage 45α (GADD45α) and proliferating cell nuclear antigen (PCNA), in Caco-2 cells using western blot analysis. We also measured glutathione peroxidase-1 (GPx-1), peroxiredoxin-1 (PRX-1), superoxide dismutase-2 (SOD-2), Hsp10, Hsp27, Hsp60, heat shock cognate (Hsc)70, Hsp70 and Hsp90. The viability of the Caco-2 cells exposed to ethanol decreased at concentrations ≥7% (P<0.05). The Olive tail moment, indicating DNA damage, increased dose dependently in ≥3% ethanol (P<0.05). Among the DNA repair proteins, the expression of PCNA and APE/Ref-1 increased significantly at 1% ethanol. Antioxidant enzymes, including GPx-1, PRX-1 and SOD-2, had an increased expression at 1% ethanol. Hsp10, Hsp27 and Hsp70 expression also increased significantly at 1% ethanol. In conclusion, the expression of DNA repair molecules, antioxidants and Hsps increased in intestinal Caco-2 cells exposed to low concentrations of ethanol. In particular, PCNA, APE/Ref-1, Hsp10, Hsp27 and Hsp70 were sensitive to low ethanol concentrations, indicating that they may be useful in evaluating the DNA repair and cytoprotective effects of the drug against stress in intestinal cells. D.A. Spandidos 2012-01-12 2012-04 /pmc/articles/PMC3493059/ /pubmed/22246134 http://dx.doi.org/10.3892/mmr.2012.754 Text en Copyright © 2012, Spandidos Publications
spellingShingle Article
PARK, SUNG CHUL
LIM, JI-YOUN
JEEN, YOON TAE
KEUM, BORA
SEO, YEON SEOK
KIM, YONG SIK
LEE, SUNG JOON
LEE, HONG SIK
CHUN, HOON JAI
UM, SOON HO
KIM, CHANG DUCK
RYU, HO SANG
SUL, DONGGEUN
OH, EUNHA
Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells
title Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells
title_full Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells
title_fullStr Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells
title_full_unstemmed Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells
title_short Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells
title_sort ethanol-induced dna damage and repair-related molecules in human intestinal epithelial caco-2 cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493059/
https://www.ncbi.nlm.nih.gov/pubmed/22246134
http://dx.doi.org/10.3892/mmr.2012.754
work_keys_str_mv AT parksungchul ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT limjiyoun ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT jeenyoontae ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT keumbora ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT seoyeonseok ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT kimyongsik ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT leesungjoon ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT leehongsik ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT chunhoonjai ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT umsoonho ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT kimchangduck ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT ryuhosang ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT suldonggeun ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells
AT oheunha ethanolinduceddnadamageandrepairrelatedmoleculesinhumanintestinalepithelialcaco2cells