Cargando…
Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture
Coherence-gated dynamic light scattering captures cellular dynamics through ultra-low-frequency (0.005–5 Hz) speckle fluctuations and Doppler shifts that encode a broad range of cellular and subcellular motions. The dynamic physiological response of tissues to applied drugs is the basis for a new ty...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493238/ https://www.ncbi.nlm.nih.gov/pubmed/23162721 http://dx.doi.org/10.1364/BOE.3.002825 |
Sumario: | Coherence-gated dynamic light scattering captures cellular dynamics through ultra-low-frequency (0.005–5 Hz) speckle fluctuations and Doppler shifts that encode a broad range of cellular and subcellular motions. The dynamic physiological response of tissues to applied drugs is the basis for a new type of phenotypic profiling for drug screening on multicellular tumor spheroids. Volumetrically resolved tissue-response fluctuation spectrograms act as fingerprints that are segmented through feature masks into high-dimensional feature vectors. Drug-response clustering is achieved through multidimensional scaling with simulated annealing to construct phenotypic drug profiles that cluster drugs with similar responses. Hypoxic vs. normoxic tissue responses present two distinct phenotypes with differentiated responses to environmental perturbations and to pharmacological doses. |
---|