Cargando…
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
This study explored various feature extraction methods for use in automated diagnosis of Attention-Deficit Hyperactivity Disorder (ADHD) from functional Magnetic Resonance Image (fMRI) data. Each participant's data consisted of a resting state fMRI scan as well as phenotypic data (age, gender,...
Autores principales: | Sidhu, Gagan S., Asgarian, Nasimeh, Greiner, Russell, Brown, Matthew R. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494168/ https://www.ncbi.nlm.nih.gov/pubmed/23162439 http://dx.doi.org/10.3389/fnsys.2012.00074 |
Ejemplares similares
-
ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
por: Brown, Matthew R. G., et al.
Publicado: (2012) -
On the neural networks of empathy: A principal component analysis of an fMRI study
por: Nomi, Jason S, et al.
Publicado: (2008) -
Kernel regression for fMRI pattern prediction
por: Chu, Carlton, et al.
Publicado: (2011) -
Functional Connectivity in Tactile Object Discrimination—A Principal Component Analysis of an Event Related fMRI-Study
por: Hartmann, Susanne, et al.
Publicado: (2008) -
Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI
por: Sörös, Peter, et al.
Publicado: (2019)