Cargando…

Thermal conductivity in porous silicon nanowire arrays

The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations...

Descripción completa

Detalles Bibliográficos
Autores principales: Weisse, Jeffrey M, Marconnet, Amy M, Kim, Dong Rip, Rao, Pratap M, Panzer, Matthew A, Goodson, Kenneth E, Zheng, Xiaolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494563/
https://www.ncbi.nlm.nih.gov/pubmed/23039084
http://dx.doi.org/10.1186/1556-276X-7-554
Descripción
Sumario:The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.