Cargando…
Gene Size Matters
In this work we show that in genome-wide association studies (GWAS) there is a strong bias favoring of genes covered by larger numbers of SNPs. Thus, we state here that there is a need for correction for such bias when performing downstream gene-level analysis, e.g. pathway analysis and gene-set ana...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494661/ https://www.ncbi.nlm.nih.gov/pubmed/23152854 http://dx.doi.org/10.1371/journal.pone.0049093 |
Sumario: | In this work we show that in genome-wide association studies (GWAS) there is a strong bias favoring of genes covered by larger numbers of SNPs. Thus, we state here that there is a need for correction for such bias when performing downstream gene-level analysis, e.g. pathway analysis and gene-set analysis. We investigate several methods of obtaining gene level statistical significance in GWAS, and compare their effectiveness in correcting such bias. We also propose a simple algorithm based on first order statistic that corrects such bias. |
---|