Cargando…
Indirect Methods Produce Higher Estimates of Fine Root Production and Turnover Rates than Direct Methods
The production and turnover of fine roots play substantial roles in the biogeochemical cycles of terrestrial ecosystems. However, the disparity among the estimates of both production and turnover, particularly due to technical limitations, has been debated for several decades. Here, we conducted a m...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494664/ https://www.ncbi.nlm.nih.gov/pubmed/23166603 http://dx.doi.org/10.1371/journal.pone.0048989 |
Sumario: | The production and turnover of fine roots play substantial roles in the biogeochemical cycles of terrestrial ecosystems. However, the disparity among the estimates of both production and turnover, particularly due to technical limitations, has been debated for several decades. Here, we conducted a meta-analysis to compare published estimates of fine root production and turnover rates derived from different methods at the same sites and at the same sampling time. On average, the estimates of fine root production and turnover rates were 87% and 124% higher, respectively, by indirect methods than by direct methods. The substantially higher fine root production and turnover estimated by indirect methods, on which most global carbon models are based, indicate the necessity of re-assessing the global carbon model predictions for atmospheric carbon sequestration in soils as a result of the production and turnover of fine roots. |
---|