Cargando…
Automated Masking of AFLP Markers Improves Reliability of Phylogenetic Analyses
The amplified fragment length polymorphisms (AFLP) method has become an attractive tool in phylogenetics due to the ease with which large numbers of characters can be generated. In contrast to sequence-based phylogenetic approaches, AFLP data consist of anonymous multilocus markers. However, potenti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494671/ https://www.ncbi.nlm.nih.gov/pubmed/23152859 http://dx.doi.org/10.1371/journal.pone.0049119 |
Sumario: | The amplified fragment length polymorphisms (AFLP) method has become an attractive tool in phylogenetics due to the ease with which large numbers of characters can be generated. In contrast to sequence-based phylogenetic approaches, AFLP data consist of anonymous multilocus markers. However, potential artificial amplifications or amplification failures of fragments contained in the AFLP data set will reduce AFLP reliability especially in phylogenetic inferences. In the present study, we introduce a new automated scoring approach, called “AMARE” (AFLP MAtrix REduction). The approach is based on replicates and makes marker selection dependent on marker reproducibility to control for scoring errors. To demonstrate the effectiveness of our approach we record error rate estimations, resolution scores, PCoA and stemminess calculations. As in general the true tree (i.e. the species phylogeny) is not known, we tested AMARE with empirical, already published AFLP data sets, and compared tree topologies of different AMARE generated character matrices to existing phylogenetic trees and/or other independent sources such as morphological and geographical data. It turns out that the selection of masked character matrices with highest resolution scores gave similar or even better phylogenetic results than the original AFLP data sets. |
---|