Cargando…

A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation

Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound P...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldmann, Tobias, Overlack, Nora, Möller, Fabian, Belakhov, Valery, van Wyk, Michiel, Baasov, Timor, Wolfrum, Uwe, Nagel-Wolfrum, Kerstin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494875/
https://www.ncbi.nlm.nih.gov/pubmed/23027640
http://dx.doi.org/10.1002/emmm.201201438
Descripción
Sumario:Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read-through efficacy of the TRIDs in retinal cultures; however, we show an excellent biocompatibility in retinal cultures with read-through versus toxicity evidently superior for NB54 and PTC124. In addition, in vivo administration of NB54 and PTC124 induced recovery of the full-length harmonin a1 with the same efficacy. The high biocompatibilities combined with the sustained read-through efficacies of these drugs emphasize the potential of NB54 and PTC124 in treating nonsense mutation-based retinal disorders.