Cargando…

Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient

BACKGROUND: Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separ...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossetto, Maurizio, Allen, Chris B, Thurlby, Katie AG, Weston, Peter H, Milner, Melita L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495659/
https://www.ncbi.nlm.nih.gov/pubmed/22906180
http://dx.doi.org/10.1186/1471-2148-12-149
_version_ 1782249543589429248
author Rossetto, Maurizio
Allen, Chris B
Thurlby, Katie AG
Weston, Peter H
Milner, Melita L
author_facet Rossetto, Maurizio
Allen, Chris B
Thurlby, Katie AG
Weston, Peter H
Milner, Melita L
author_sort Rossetto, Maurizio
collection PubMed
description BACKGROUND: Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? RESULTS: Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM). The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters corresponding to the four recognised species with the additional division of T. speciosissima into populations north and south of the Shoalhaven River valley. Unexpectedly, the northern disjunct population of T. oreades grouped with T. mongaensis and was identified as a hybrid swarm by the Bayesian assignment test implemented in NewHybrids. Present day and LGM environmental niche models differed dramatically, suggesting that distributions of all species had repeatedly expanded and contracted in response to Pleistocene climatic oscillations and confirming strongly marked historical distributional gaps among taxes. CONCLUSIONS: Genetic structure and bio-climatic modeling results are more consistent with a history of allopatric speciation followed by repeated episodes of secondary contact and localised hybridisation, rather than with parapatric speciation. This study on Telopea shows that the evidence for temporal exclusion of gene flow can be found even outside obvious geographical contexts, and that it is possible to make significant progress towards excluding parapatric speciation as a contributing evolutionary process.
format Online
Article
Text
id pubmed-3495659
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34956592012-11-13 Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient Rossetto, Maurizio Allen, Chris B Thurlby, Katie AG Weston, Peter H Milner, Melita L BMC Evol Biol Research Article BACKGROUND: Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? RESULTS: Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM). The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters corresponding to the four recognised species with the additional division of T. speciosissima into populations north and south of the Shoalhaven River valley. Unexpectedly, the northern disjunct population of T. oreades grouped with T. mongaensis and was identified as a hybrid swarm by the Bayesian assignment test implemented in NewHybrids. Present day and LGM environmental niche models differed dramatically, suggesting that distributions of all species had repeatedly expanded and contracted in response to Pleistocene climatic oscillations and confirming strongly marked historical distributional gaps among taxes. CONCLUSIONS: Genetic structure and bio-climatic modeling results are more consistent with a history of allopatric speciation followed by repeated episodes of secondary contact and localised hybridisation, rather than with parapatric speciation. This study on Telopea shows that the evidence for temporal exclusion of gene flow can be found even outside obvious geographical contexts, and that it is possible to make significant progress towards excluding parapatric speciation as a contributing evolutionary process. BioMed Central 2012-08-20 /pmc/articles/PMC3495659/ /pubmed/22906180 http://dx.doi.org/10.1186/1471-2148-12-149 Text en Copyright ©2012 Rossetto et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Rossetto, Maurizio
Allen, Chris B
Thurlby, Katie AG
Weston, Peter H
Milner, Melita L
Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient
title Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient
title_full Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient
title_fullStr Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient
title_full_unstemmed Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient
title_short Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient
title_sort genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495659/
https://www.ncbi.nlm.nih.gov/pubmed/22906180
http://dx.doi.org/10.1186/1471-2148-12-149
work_keys_str_mv AT rossettomaurizio geneticstructureandbioclimaticmodelingsupportallopatricoverparapatricspeciationalongalatitudinalgradient
AT allenchrisb geneticstructureandbioclimaticmodelingsupportallopatricoverparapatricspeciationalongalatitudinalgradient
AT thurlbykatieag geneticstructureandbioclimaticmodelingsupportallopatricoverparapatricspeciationalongalatitudinalgradient
AT westonpeterh geneticstructureandbioclimaticmodelingsupportallopatricoverparapatricspeciationalongalatitudinalgradient
AT milnermelital geneticstructureandbioclimaticmodelingsupportallopatricoverparapatricspeciationalongalatitudinalgradient