Cargando…

Transcriptome Profiling Reveals Stage-Specific Production and Requirement of Flagella during Biofilm Development in Bordetella bronchiseptica

We have used microarray analysis to study the transcriptome of the bacterial pathogen Bordetella bronchiseptica over the course of five time points representing distinct stages of biofilm development. The results suggest that B. bronchiseptica undergoes a coordinately regulated gene expression progr...

Descripción completa

Detalles Bibliográficos
Autores principales: Nicholson, Tracy L., Conover, Matt S., Deora, Rajendar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495763/
https://www.ncbi.nlm.nih.gov/pubmed/23152870
http://dx.doi.org/10.1371/journal.pone.0049166
Descripción
Sumario:We have used microarray analysis to study the transcriptome of the bacterial pathogen Bordetella bronchiseptica over the course of five time points representing distinct stages of biofilm development. The results suggest that B. bronchiseptica undergoes a coordinately regulated gene expression program similar to a bacterial developmental process. Expression and subsequent production of the genes encoding flagella, a classical Bvg(−) phase phenotype, occurs and is under tight regulatory control during B. bronchiseptica biofilm development. Using mutational analysis, we demonstrate that flagella production at the appropriate stage of biofilm development, i.e. production early subsequently followed by repression, is required for robust biofilm formation and maturation. We also demonstrate that flagella are necessary and enhance the initial cell-surface interactions, thereby providing mechanistic information on the initial stages of biofilm development for B. bronchiseptica. Biofilm formation by B. bronchiseptica involves the production of both Bvg-activated and Bvg-repressed factors followed by the repression of factors that inhibit formation of mature biofilms.