Cargando…

Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management

Systemic primary carnitine deficiency (CDSP) is an autosomal recessive disorder of carnitine transportation. The clinical manifestations of CDSP can vary widely with respect to age of onset, organ involvement, and severity of symptoms, but are typically characterized by episodes of hypoketotic hypog...

Descripción completa

Detalles Bibliográficos
Autores principales: Magoulas, Pilar L, El-Hattab, Ayman W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495906/
https://www.ncbi.nlm.nih.gov/pubmed/22989098
http://dx.doi.org/10.1186/1750-1172-7-68
_version_ 1782249589473017856
author Magoulas, Pilar L
El-Hattab, Ayman W
author_facet Magoulas, Pilar L
El-Hattab, Ayman W
author_sort Magoulas, Pilar L
collection PubMed
description Systemic primary carnitine deficiency (CDSP) is an autosomal recessive disorder of carnitine transportation. The clinical manifestations of CDSP can vary widely with respect to age of onset, organ involvement, and severity of symptoms, but are typically characterized by episodes of hypoketotic hypoglycemia, hepatomegaly, elevated transaminases, and hyperammonemia in infants; skeletal myopathy, elevated creatine kinase (CK), and cardiomyopathy in childhood; or cardiomyopathy, arrhythmias, or fatigability in adulthood. The diagnosis can be suspected on newborn screening, but is established by demonstration of low plasma free carnitine concentration (<5 μM, normal 25-50 μM), reduced fibroblast carnitine transport (<10% of controls), and molecular testing of the SLC22A5 gene. The incidence of CDSP varies depending on ethnicity; however the frequency in the United States is estimated to be approximately 1 in 50,000 individuals based on newborn screening data. CDSP is caused by recessive mutations in the SLC22A5 gene. This gene encodes organic cation transporter type 2 (OCTN2) which transport carnitine across cell membranes. Over 100 mutations have been reported in this gene with the c.136C > T (p.P46S) mutation being the most frequent mutation identified. CDSP should be differentiated from secondary causes of carnitine deficiency such as various organic acidemias and fatty acid oxidation defects. CDSP is an autosomal recessive condition; therefore the recurrence risk in each pregnancy is 25%. Carrier screening for at-risk individuals and family members should be obtained by performing targeted mutation analysis of the SLC22A5 gene since plasma carnitine analysis is not a sufficient methodology for determining carrier status. Antenatal diagnosis for pregnancies at increased risk of CDSP is possible by molecular genetic testing of extracted DNA from chorionic villus sampling or amniocentesis if both mutations in SLC22A5 gene are known. Once the diagnosis of CDSP is established in an individual, an echocardiogram, electrocardiogram, CK concentration, liver transaminanses measurement, and pre-prandial blood sugar levels, should be performed for baseline assessment. Primary treatment involves supplementation of oral levocarnitine (L-carnitine) at a dose of 50–400 mg/kg/day divided into three doses. No formal surveillance guidelines for individuals with CDSP have been established to date, however the following screening recommendations are suggested: annual echocardiogram and electrocardiogram, frequent plasma carnitine levels, and CK and liver transaminases measurement can be considered during acute illness. Adult women with CDSP who are planning to or are pregnant should meet with a metabolic or genetic specialist ideally before conception to discuss management of carnitine levels during pregnancy since carnitine levels are typically lower during pregnancy. The prognosis for individuals with CDSP depends on the age, presentation, and severity of symptoms at the time of diagnosis; however the long-term prognosis is favorable as long as individuals remain on carnitine supplementation.
format Online
Article
Text
id pubmed-3495906
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34959062012-11-13 Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management Magoulas, Pilar L El-Hattab, Ayman W Orphanet J Rare Dis Review Systemic primary carnitine deficiency (CDSP) is an autosomal recessive disorder of carnitine transportation. The clinical manifestations of CDSP can vary widely with respect to age of onset, organ involvement, and severity of symptoms, but are typically characterized by episodes of hypoketotic hypoglycemia, hepatomegaly, elevated transaminases, and hyperammonemia in infants; skeletal myopathy, elevated creatine kinase (CK), and cardiomyopathy in childhood; or cardiomyopathy, arrhythmias, or fatigability in adulthood. The diagnosis can be suspected on newborn screening, but is established by demonstration of low plasma free carnitine concentration (<5 μM, normal 25-50 μM), reduced fibroblast carnitine transport (<10% of controls), and molecular testing of the SLC22A5 gene. The incidence of CDSP varies depending on ethnicity; however the frequency in the United States is estimated to be approximately 1 in 50,000 individuals based on newborn screening data. CDSP is caused by recessive mutations in the SLC22A5 gene. This gene encodes organic cation transporter type 2 (OCTN2) which transport carnitine across cell membranes. Over 100 mutations have been reported in this gene with the c.136C > T (p.P46S) mutation being the most frequent mutation identified. CDSP should be differentiated from secondary causes of carnitine deficiency such as various organic acidemias and fatty acid oxidation defects. CDSP is an autosomal recessive condition; therefore the recurrence risk in each pregnancy is 25%. Carrier screening for at-risk individuals and family members should be obtained by performing targeted mutation analysis of the SLC22A5 gene since plasma carnitine analysis is not a sufficient methodology for determining carrier status. Antenatal diagnosis for pregnancies at increased risk of CDSP is possible by molecular genetic testing of extracted DNA from chorionic villus sampling or amniocentesis if both mutations in SLC22A5 gene are known. Once the diagnosis of CDSP is established in an individual, an echocardiogram, electrocardiogram, CK concentration, liver transaminanses measurement, and pre-prandial blood sugar levels, should be performed for baseline assessment. Primary treatment involves supplementation of oral levocarnitine (L-carnitine) at a dose of 50–400 mg/kg/day divided into three doses. No formal surveillance guidelines for individuals with CDSP have been established to date, however the following screening recommendations are suggested: annual echocardiogram and electrocardiogram, frequent plasma carnitine levels, and CK and liver transaminases measurement can be considered during acute illness. Adult women with CDSP who are planning to or are pregnant should meet with a metabolic or genetic specialist ideally before conception to discuss management of carnitine levels during pregnancy since carnitine levels are typically lower during pregnancy. The prognosis for individuals with CDSP depends on the age, presentation, and severity of symptoms at the time of diagnosis; however the long-term prognosis is favorable as long as individuals remain on carnitine supplementation. BioMed Central 2012-09-18 /pmc/articles/PMC3495906/ /pubmed/22989098 http://dx.doi.org/10.1186/1750-1172-7-68 Text en Copyright ©2012 Magoulas and El-Hattab; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Magoulas, Pilar L
El-Hattab, Ayman W
Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management
title Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management
title_full Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management
title_fullStr Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management
title_full_unstemmed Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management
title_short Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management
title_sort systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495906/
https://www.ncbi.nlm.nih.gov/pubmed/22989098
http://dx.doi.org/10.1186/1750-1172-7-68
work_keys_str_mv AT magoulaspilarl systemicprimarycarnitinedeficiencyanoverviewofclinicalmanifestationsdiagnosisandmanagement
AT elhattabaymanw systemicprimarycarnitinedeficiencyanoverviewofclinicalmanifestationsdiagnosisandmanagement