Cargando…
Premenopausal serum androgens and breast cancer risk: a nested case-control study
INTRODUCTION: Prospective epidemiologic studies have consistently shown that levels of circulating androgens in postmenopausal women are positively associated with breast cancer risk. However, data in premenopausal women are limited. METHODS: A case-control study nested within the New York Universit...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496150/ https://www.ncbi.nlm.nih.gov/pubmed/22339988 http://dx.doi.org/10.1186/bcr3117 |
_version_ | 1782249610744430592 |
---|---|
author | Zeleniuch-Jacquotte, Anne Afanasyeva, Yelena Kaaks, Rudolf Rinaldi, Sabina Scarmo, Stephanie Liu, Mengling Arslan, Alan A Toniolo, Paolo Shore, Roy E Koenig, Karen L |
author_facet | Zeleniuch-Jacquotte, Anne Afanasyeva, Yelena Kaaks, Rudolf Rinaldi, Sabina Scarmo, Stephanie Liu, Mengling Arslan, Alan A Toniolo, Paolo Shore, Roy E Koenig, Karen L |
author_sort | Zeleniuch-Jacquotte, Anne |
collection | PubMed |
description | INTRODUCTION: Prospective epidemiologic studies have consistently shown that levels of circulating androgens in postmenopausal women are positively associated with breast cancer risk. However, data in premenopausal women are limited. METHODS: A case-control study nested within the New York University Women's Health Study was conducted. A total of 356 cases (276 invasive and 80 in situ) and 683 individually-matched controls were included. Matching variables included age and date, phase, and day of menstrual cycle at blood donation. Testosterone, androstenedione, dehydroandrosterone sulfate (DHEAS) and sex hormone-binding globulin (SHBG) were measured using direct immunoassays. Free testosterone was calculated. RESULTS: Premenopausal serum testosterone and free testosterone concentrations were positively associated with breast cancer risk. In models adjusted for known risk factors of breast cancer, the odds ratios for increasing quintiles of testosterone were 1.0 (reference), 1.5 (95% confidence interval (CI), 0.9 to 2.3), 1.2 (95% CI, 0.7 to 1.9), 1.4 (95% CI, 0.9 to 2.3) and 1.8 (95% CI, 1.1 to 2.9; P(trend )= 0.04), and for free testosterone were 1.0 (reference), 1.2 (95% CI, 0.7 to 1.8), 1.5 (95% CI, 0.9 to 2.3), 1.5 (95% CI, 0.9 to 2.3), and 1.8 (95% CI, 1.1 to 2.8, P(trend )= 0.01). A marginally significant positive association was observed with androstenedione (P = 0.07), but no association with DHEAS or SHBG. Results were consistent in analyses stratified by tumor type (invasive, in situ), estrogen receptor status, age at blood donation, and menopausal status at diagnosis. Intra-class correlation coefficients for samples collected from 0.8 to 5.3 years apart (median 2 years) in 138 cases and 268 controls were greater than 0.7 for all biomarkers except for androstenedione (0.57 in controls). CONCLUSIONS: Premenopausal concentrations of testosterone and free testosterone are associated with breast cancer risk. Testosterone and free testosterone measurements are also highly reliable (that is, a single measurement is reflective of a woman's average level over time). Results from other prospective studies are consistent with our results. The impact of including testosterone or free testosterone in breast cancer risk prediction models for women between the ages of 40 and 50 years should be assessed. Improving risk prediction models for this age group could help decision making regarding both screening and chemoprevention of breast cancer. |
format | Online Article Text |
id | pubmed-3496150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34961502012-11-14 Premenopausal serum androgens and breast cancer risk: a nested case-control study Zeleniuch-Jacquotte, Anne Afanasyeva, Yelena Kaaks, Rudolf Rinaldi, Sabina Scarmo, Stephanie Liu, Mengling Arslan, Alan A Toniolo, Paolo Shore, Roy E Koenig, Karen L Breast Cancer Res Research Article INTRODUCTION: Prospective epidemiologic studies have consistently shown that levels of circulating androgens in postmenopausal women are positively associated with breast cancer risk. However, data in premenopausal women are limited. METHODS: A case-control study nested within the New York University Women's Health Study was conducted. A total of 356 cases (276 invasive and 80 in situ) and 683 individually-matched controls were included. Matching variables included age and date, phase, and day of menstrual cycle at blood donation. Testosterone, androstenedione, dehydroandrosterone sulfate (DHEAS) and sex hormone-binding globulin (SHBG) were measured using direct immunoassays. Free testosterone was calculated. RESULTS: Premenopausal serum testosterone and free testosterone concentrations were positively associated with breast cancer risk. In models adjusted for known risk factors of breast cancer, the odds ratios for increasing quintiles of testosterone were 1.0 (reference), 1.5 (95% confidence interval (CI), 0.9 to 2.3), 1.2 (95% CI, 0.7 to 1.9), 1.4 (95% CI, 0.9 to 2.3) and 1.8 (95% CI, 1.1 to 2.9; P(trend )= 0.04), and for free testosterone were 1.0 (reference), 1.2 (95% CI, 0.7 to 1.8), 1.5 (95% CI, 0.9 to 2.3), 1.5 (95% CI, 0.9 to 2.3), and 1.8 (95% CI, 1.1 to 2.8, P(trend )= 0.01). A marginally significant positive association was observed with androstenedione (P = 0.07), but no association with DHEAS or SHBG. Results were consistent in analyses stratified by tumor type (invasive, in situ), estrogen receptor status, age at blood donation, and menopausal status at diagnosis. Intra-class correlation coefficients for samples collected from 0.8 to 5.3 years apart (median 2 years) in 138 cases and 268 controls were greater than 0.7 for all biomarkers except for androstenedione (0.57 in controls). CONCLUSIONS: Premenopausal concentrations of testosterone and free testosterone are associated with breast cancer risk. Testosterone and free testosterone measurements are also highly reliable (that is, a single measurement is reflective of a woman's average level over time). Results from other prospective studies are consistent with our results. The impact of including testosterone or free testosterone in breast cancer risk prediction models for women between the ages of 40 and 50 years should be assessed. Improving risk prediction models for this age group could help decision making regarding both screening and chemoprevention of breast cancer. BioMed Central 2012 2012-02-16 /pmc/articles/PMC3496150/ /pubmed/22339988 http://dx.doi.org/10.1186/bcr3117 Text en Copyright ©2012 Zeleniuch-Jacquotte et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zeleniuch-Jacquotte, Anne Afanasyeva, Yelena Kaaks, Rudolf Rinaldi, Sabina Scarmo, Stephanie Liu, Mengling Arslan, Alan A Toniolo, Paolo Shore, Roy E Koenig, Karen L Premenopausal serum androgens and breast cancer risk: a nested case-control study |
title | Premenopausal serum androgens and breast cancer risk: a nested case-control study |
title_full | Premenopausal serum androgens and breast cancer risk: a nested case-control study |
title_fullStr | Premenopausal serum androgens and breast cancer risk: a nested case-control study |
title_full_unstemmed | Premenopausal serum androgens and breast cancer risk: a nested case-control study |
title_short | Premenopausal serum androgens and breast cancer risk: a nested case-control study |
title_sort | premenopausal serum androgens and breast cancer risk: a nested case-control study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496150/ https://www.ncbi.nlm.nih.gov/pubmed/22339988 http://dx.doi.org/10.1186/bcr3117 |
work_keys_str_mv | AT zeleniuchjacquotteanne premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT afanasyevayelena premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT kaaksrudolf premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT rinaldisabina premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT scarmostephanie premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT liumengling premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT arslanalana premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT toniolopaolo premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT shoreroye premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy AT koenigkarenl premenopausalserumandrogensandbreastcancerriskanestedcasecontrolstudy |