Cargando…
AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli
BACKGROUND: Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae poses serious challenges to clinicians because of its resistance to many classes of antibiotics. METHODS AND FINDINGS: The mechanism of synergistic activity of a combination of (−)-epigallocatechin-3-gallate (EGCG) and β-l...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496731/ https://www.ncbi.nlm.nih.gov/pubmed/23152812 http://dx.doi.org/10.1371/journal.pone.0048880 |
_version_ | 1782249673635921920 |
---|---|
author | Cui, Yidan Kim, So Hyun Kim, Hyunseok Yeom, Jinki Ko, Kisung Park, Woojun Park, Sungsu |
author_facet | Cui, Yidan Kim, So Hyun Kim, Hyunseok Yeom, Jinki Ko, Kisung Park, Woojun Park, Sungsu |
author_sort | Cui, Yidan |
collection | PubMed |
description | BACKGROUND: Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae poses serious challenges to clinicians because of its resistance to many classes of antibiotics. METHODS AND FINDINGS: The mechanism of synergistic activity of a combination of (−)-epigallocatechin-3-gallate (EGCG) and β-lactam antibiotics cefotaxime was studied on Extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC), by visualizing the morphological alteration on the cell wall induced by the combination using atomic force microscopy (AFM). Cells at sub-MICs (sub-minimum inhibitory concentrations) of cefotaxime were initially filamentated but recovered to the normal shape later, whereas cells at sub-MICs of EGCG experienced temporal disturbance on the cell wall such as leakage and release of cellular debris and groove formation, but later recovered to the normal shape. In contrast, the combination of cefotaxime and EGCG at their respective sub-MICs induced permanent cellular damages as well as continuous elongation in cells and eventually killed them. Flow cytometry showed that intracellular oxidative stress levels in the cell treated with a combination of EGCG and cefotaxime at sub-MICs were higher than those in the cells treated with either cefotaxime or EGCG at sub-MICs. CONCLUSIONS: These results suggest that the synergistic effect of EGCG between EGCG and cefotaxime against ESBL-EC is related to cooperative activity of exogenous and endogenous reactive oxygen species (ROS) generated by EGCG and cefotaxime, respectively. |
format | Online Article Text |
id | pubmed-3496731 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34967312012-11-14 AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Cui, Yidan Kim, So Hyun Kim, Hyunseok Yeom, Jinki Ko, Kisung Park, Woojun Park, Sungsu PLoS One Research Article BACKGROUND: Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae poses serious challenges to clinicians because of its resistance to many classes of antibiotics. METHODS AND FINDINGS: The mechanism of synergistic activity of a combination of (−)-epigallocatechin-3-gallate (EGCG) and β-lactam antibiotics cefotaxime was studied on Extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC), by visualizing the morphological alteration on the cell wall induced by the combination using atomic force microscopy (AFM). Cells at sub-MICs (sub-minimum inhibitory concentrations) of cefotaxime were initially filamentated but recovered to the normal shape later, whereas cells at sub-MICs of EGCG experienced temporal disturbance on the cell wall such as leakage and release of cellular debris and groove formation, but later recovered to the normal shape. In contrast, the combination of cefotaxime and EGCG at their respective sub-MICs induced permanent cellular damages as well as continuous elongation in cells and eventually killed them. Flow cytometry showed that intracellular oxidative stress levels in the cell treated with a combination of EGCG and cefotaxime at sub-MICs were higher than those in the cells treated with either cefotaxime or EGCG at sub-MICs. CONCLUSIONS: These results suggest that the synergistic effect of EGCG between EGCG and cefotaxime against ESBL-EC is related to cooperative activity of exogenous and endogenous reactive oxygen species (ROS) generated by EGCG and cefotaxime, respectively. Public Library of Science 2012-11-13 /pmc/articles/PMC3496731/ /pubmed/23152812 http://dx.doi.org/10.1371/journal.pone.0048880 Text en © 2012 Cui et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cui, Yidan Kim, So Hyun Kim, Hyunseok Yeom, Jinki Ko, Kisung Park, Woojun Park, Sungsu AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli |
title | AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli
|
title_full | AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli
|
title_fullStr | AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli
|
title_full_unstemmed | AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli
|
title_short | AFM Probing the Mechanism of Synergistic Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) with Cefotaxime against Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli
|
title_sort | afm probing the mechanism of synergistic effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (egcg) with cefotaxime against extended-spectrum beta-lactamase (esbl)-producing escherichia coli |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496731/ https://www.ncbi.nlm.nih.gov/pubmed/23152812 http://dx.doi.org/10.1371/journal.pone.0048880 |
work_keys_str_mv | AT cuiyidan afmprobingthemechanismofsynergisticeffectsofthegreenteapolyphenolepigallocatechin3gallateegcgwithcefotaximeagainstextendedspectrumbetalactamaseesblproducingescherichiacoli AT kimsohyun afmprobingthemechanismofsynergisticeffectsofthegreenteapolyphenolepigallocatechin3gallateegcgwithcefotaximeagainstextendedspectrumbetalactamaseesblproducingescherichiacoli AT kimhyunseok afmprobingthemechanismofsynergisticeffectsofthegreenteapolyphenolepigallocatechin3gallateegcgwithcefotaximeagainstextendedspectrumbetalactamaseesblproducingescherichiacoli AT yeomjinki afmprobingthemechanismofsynergisticeffectsofthegreenteapolyphenolepigallocatechin3gallateegcgwithcefotaximeagainstextendedspectrumbetalactamaseesblproducingescherichiacoli AT kokisung afmprobingthemechanismofsynergisticeffectsofthegreenteapolyphenolepigallocatechin3gallateegcgwithcefotaximeagainstextendedspectrumbetalactamaseesblproducingescherichiacoli AT parkwoojun afmprobingthemechanismofsynergisticeffectsofthegreenteapolyphenolepigallocatechin3gallateegcgwithcefotaximeagainstextendedspectrumbetalactamaseesblproducingescherichiacoli AT parksungsu afmprobingthemechanismofsynergisticeffectsofthegreenteapolyphenolepigallocatechin3gallateegcgwithcefotaximeagainstextendedspectrumbetalactamaseesblproducingescherichiacoli |