Cargando…
Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model
Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497026/ https://www.ncbi.nlm.nih.gov/pubmed/23170087 http://dx.doi.org/10.3390/md10102322 |
_version_ | 1782249706119757824 |
---|---|
author | Jaja-Chimedza, Asha Gantar, Miroslav Gibbs, Patrick D. L. Schmale, Michael C. Berry, John P. |
author_facet | Jaja-Chimedza, Asha Gantar, Miroslav Gibbs, Patrick D. L. Schmale, Michael C. Berry, John P. |
author_sort | Jaja-Chimedza, Asha |
collection | PubMed |
description | Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins) from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum.Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6), including three congeners (4–6) previously identified from the strain, and two variants previously identified from other species (2 and 3), as well as one apparently novel member of the series (1). Five of the PMAs in the series (1–5) were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation. |
format | Online Article Text |
id | pubmed-3497026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-34970262012-11-20 Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model Jaja-Chimedza, Asha Gantar, Miroslav Gibbs, Patrick D. L. Schmale, Michael C. Berry, John P. Mar Drugs Article Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins) from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum.Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6), including three congeners (4–6) previously identified from the strain, and two variants previously identified from other species (2 and 3), as well as one apparently novel member of the series (1). Five of the PMAs in the series (1–5) were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation. MDPI 2012-10-22 /pmc/articles/PMC3497026/ /pubmed/23170087 http://dx.doi.org/10.3390/md10102322 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Jaja-Chimedza, Asha Gantar, Miroslav Gibbs, Patrick D. L. Schmale, Michael C. Berry, John P. Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model |
title | Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model |
title_full | Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model |
title_fullStr | Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model |
title_full_unstemmed | Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model |
title_short | Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model |
title_sort | polymethoxy-1-alkenes from aphanizomenon ovalisporum inhibit vertebrate development in the zebrafish (danio rerio) embryo model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497026/ https://www.ncbi.nlm.nih.gov/pubmed/23170087 http://dx.doi.org/10.3390/md10102322 |
work_keys_str_mv | AT jajachimedzaasha polymethoxy1alkenesfromaphanizomenonovalisporuminhibitvertebratedevelopmentinthezebrafishdaniorerioembryomodel AT gantarmiroslav polymethoxy1alkenesfromaphanizomenonovalisporuminhibitvertebratedevelopmentinthezebrafishdaniorerioembryomodel AT gibbspatrickdl polymethoxy1alkenesfromaphanizomenonovalisporuminhibitvertebratedevelopmentinthezebrafishdaniorerioembryomodel AT schmalemichaelc polymethoxy1alkenesfromaphanizomenonovalisporuminhibitvertebratedevelopmentinthezebrafishdaniorerioembryomodel AT berryjohnp polymethoxy1alkenesfromaphanizomenonovalisporuminhibitvertebratedevelopmentinthezebrafishdaniorerioembryomodel |