Cargando…

Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells

The use of ultrashort femtosecond pulsed lasers to effect membrane permeabilisation and initiate both optoinjection and transfection of cells has recently seen immense interest. We investigate femtosecond laser-induced membrane permeabilisation in mammalian cells as a function of pulse duration, pul...

Descripción completa

Detalles Bibliográficos
Autores principales: Rudhall, Andrew P., Antkowiak, Maciej, Tsampoula, Xanthi, Mazilu, Michael, Metzger, Nikolaus K., Gunn-Moore, Frank, Dholakia, Kishan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497030/
https://www.ncbi.nlm.nih.gov/pubmed/23152947
http://dx.doi.org/10.1038/srep00858
_version_ 1782249706854809600
author Rudhall, Andrew P.
Antkowiak, Maciej
Tsampoula, Xanthi
Mazilu, Michael
Metzger, Nikolaus K.
Gunn-Moore, Frank
Dholakia, Kishan
author_facet Rudhall, Andrew P.
Antkowiak, Maciej
Tsampoula, Xanthi
Mazilu, Michael
Metzger, Nikolaus K.
Gunn-Moore, Frank
Dholakia, Kishan
author_sort Rudhall, Andrew P.
collection PubMed
description The use of ultrashort femtosecond pulsed lasers to effect membrane permeabilisation and initiate both optoinjection and transfection of cells has recently seen immense interest. We investigate femtosecond laser-induced membrane permeabilisation in mammalian cells as a function of pulse duration, pulse energy and number of pulses, by quantifying the efficiency of optoinjection for these parameters. Depending on pulse duration and pulse energy we identify two distinct membrane permeabilisation regimes. In the first regime a nonlinear dependence of order 3.4-9.6 is exhibited below a threshold peak power of at least 6 kW. Above this threshold peak power, the nonlinear dependence is saturated resulting in linear behaviour. This indicates that the membrane permeabilisation mechanism requires efficient multiphoton absorption to produce free electrons but once this process saturates, linear absorption dominates. Our experimental findings support a previously proposed theoretical model and provide a step towards the optimisation of laser-mediated gene delivery into mammalian cells.
format Online
Article
Text
id pubmed-3497030
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-34970302012-11-14 Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells Rudhall, Andrew P. Antkowiak, Maciej Tsampoula, Xanthi Mazilu, Michael Metzger, Nikolaus K. Gunn-Moore, Frank Dholakia, Kishan Sci Rep Article The use of ultrashort femtosecond pulsed lasers to effect membrane permeabilisation and initiate both optoinjection and transfection of cells has recently seen immense interest. We investigate femtosecond laser-induced membrane permeabilisation in mammalian cells as a function of pulse duration, pulse energy and number of pulses, by quantifying the efficiency of optoinjection for these parameters. Depending on pulse duration and pulse energy we identify two distinct membrane permeabilisation regimes. In the first regime a nonlinear dependence of order 3.4-9.6 is exhibited below a threshold peak power of at least 6 kW. Above this threshold peak power, the nonlinear dependence is saturated resulting in linear behaviour. This indicates that the membrane permeabilisation mechanism requires efficient multiphoton absorption to produce free electrons but once this process saturates, linear absorption dominates. Our experimental findings support a previously proposed theoretical model and provide a step towards the optimisation of laser-mediated gene delivery into mammalian cells. Nature Publishing Group 2012-11-14 /pmc/articles/PMC3497030/ /pubmed/23152947 http://dx.doi.org/10.1038/srep00858 Text en Copyright © 2012, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Rudhall, Andrew P.
Antkowiak, Maciej
Tsampoula, Xanthi
Mazilu, Michael
Metzger, Nikolaus K.
Gunn-Moore, Frank
Dholakia, Kishan
Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells
title Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells
title_full Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells
title_fullStr Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells
title_full_unstemmed Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells
title_short Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells
title_sort exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497030/
https://www.ncbi.nlm.nih.gov/pubmed/23152947
http://dx.doi.org/10.1038/srep00858
work_keys_str_mv AT rudhallandrewp exploringtheultrashortpulselaserparameterspaceformembranepermeabilisationinmammaliancells
AT antkowiakmaciej exploringtheultrashortpulselaserparameterspaceformembranepermeabilisationinmammaliancells
AT tsampoulaxanthi exploringtheultrashortpulselaserparameterspaceformembranepermeabilisationinmammaliancells
AT mazilumichael exploringtheultrashortpulselaserparameterspaceformembranepermeabilisationinmammaliancells
AT metzgernikolausk exploringtheultrashortpulselaserparameterspaceformembranepermeabilisationinmammaliancells
AT gunnmoorefrank exploringtheultrashortpulselaserparameterspaceformembranepermeabilisationinmammaliancells
AT dholakiakishan exploringtheultrashortpulselaserparameterspaceformembranepermeabilisationinmammaliancells