Cargando…
dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes
BACKGROUND: Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than 100 imprinted genes have been identified in the human genome. The recent av...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497615/ https://www.ncbi.nlm.nih.gov/pubmed/23083219 http://dx.doi.org/10.1186/1471-2105-13-271 |
_version_ | 1782249754753761280 |
---|---|
author | Li, Hua Su, Xiao Gallegos, Juan Lu, Yue Ji, Yuan Molldrem, Jeffrey J Liang, Shoudan |
author_facet | Li, Hua Su, Xiao Gallegos, Juan Lu, Yue Ji, Yuan Molldrem, Jeffrey J Liang, Shoudan |
author_sort | Li, Hua |
collection | PubMed |
description | BACKGROUND: Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than 100 imprinted genes have been identified in the human genome. The recent availability of high-throughput technology makes it possible to have large-scale prediction of imprinted genes. Here we propose a Bayesian model (dsPIG) to predict imprinted genes on the basis of allelic expression observed in mRNA-Seq data of independent human tissues. RESULTS: Our model (dsPIG) was capable of identifying imprinted genes with high sensitivity and specificity and a low false discovery rate when the number of sequenced tissue samples was fairly large, according to simulations. By applying dsPIG to the mRNA-Seq data, we predicted 94 imprinted genes in 20 cerebellum samples and 57 imprinted genes in 9 diverse tissue samples with expected low false discovery rates. We also assessed dsPIG using previously validated imprinted and non-imprinted genes. With simulations, we further analyzed how imbalanced allelic expression of non-imprinted genes or different minor allele frequencies affected the predictions of dsPIG. Interestingly, we found that, among biallelically expressed genes, at least 18 genes expressed significantly more transcripts from one allele than the other among different individuals and tissues. CONCLUSION: With the prevalence of the mRNA-Seq technology, dsPIG has become a useful tool for analysis of allelic expression and large-scale prediction of imprinted genes. For ease of use, we have set up a web service and also provided an R package for dsPIG at http://www.shoudanliang.com/dsPIG/. |
format | Online Article Text |
id | pubmed-3497615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34976152012-11-20 dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes Li, Hua Su, Xiao Gallegos, Juan Lu, Yue Ji, Yuan Molldrem, Jeffrey J Liang, Shoudan BMC Bioinformatics Research Article BACKGROUND: Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than 100 imprinted genes have been identified in the human genome. The recent availability of high-throughput technology makes it possible to have large-scale prediction of imprinted genes. Here we propose a Bayesian model (dsPIG) to predict imprinted genes on the basis of allelic expression observed in mRNA-Seq data of independent human tissues. RESULTS: Our model (dsPIG) was capable of identifying imprinted genes with high sensitivity and specificity and a low false discovery rate when the number of sequenced tissue samples was fairly large, according to simulations. By applying dsPIG to the mRNA-Seq data, we predicted 94 imprinted genes in 20 cerebellum samples and 57 imprinted genes in 9 diverse tissue samples with expected low false discovery rates. We also assessed dsPIG using previously validated imprinted and non-imprinted genes. With simulations, we further analyzed how imbalanced allelic expression of non-imprinted genes or different minor allele frequencies affected the predictions of dsPIG. Interestingly, we found that, among biallelically expressed genes, at least 18 genes expressed significantly more transcripts from one allele than the other among different individuals and tissues. CONCLUSION: With the prevalence of the mRNA-Seq technology, dsPIG has become a useful tool for analysis of allelic expression and large-scale prediction of imprinted genes. For ease of use, we have set up a web service and also provided an R package for dsPIG at http://www.shoudanliang.com/dsPIG/. BioMed Central 2012-10-19 /pmc/articles/PMC3497615/ /pubmed/23083219 http://dx.doi.org/10.1186/1471-2105-13-271 Text en Copyright ©2012 Li et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Hua Su, Xiao Gallegos, Juan Lu, Yue Ji, Yuan Molldrem, Jeffrey J Liang, Shoudan dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes |
title | dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes |
title_full | dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes |
title_fullStr | dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes |
title_full_unstemmed | dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes |
title_short | dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes |
title_sort | dspig: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497615/ https://www.ncbi.nlm.nih.gov/pubmed/23083219 http://dx.doi.org/10.1186/1471-2105-13-271 |
work_keys_str_mv | AT lihua dspigatooltopredictimprintedgenesfromthedeepsequencingofwholetranscriptomes AT suxiao dspigatooltopredictimprintedgenesfromthedeepsequencingofwholetranscriptomes AT gallegosjuan dspigatooltopredictimprintedgenesfromthedeepsequencingofwholetranscriptomes AT luyue dspigatooltopredictimprintedgenesfromthedeepsequencingofwholetranscriptomes AT jiyuan dspigatooltopredictimprintedgenesfromthedeepsequencingofwholetranscriptomes AT molldremjeffreyj dspigatooltopredictimprintedgenesfromthedeepsequencingofwholetranscriptomes AT liangshoudan dspigatooltopredictimprintedgenesfromthedeepsequencingofwholetranscriptomes |