Cargando…

Advantages and limitations of cell-based assays for GTPase activation and regulation

Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being “on” in the active, GTP-bound state and “...

Descripción completa

Detalles Bibliográficos
Autor principal: Casanova, James E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498073/
https://www.ncbi.nlm.nih.gov/pubmed/23181197
http://dx.doi.org/10.4161/cl.22045
_version_ 1782249781560606720
author Casanova, James E.
author_facet Casanova, James E.
author_sort Casanova, James E.
collection PubMed
description Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being “on” in the active, GTP-bound state and “off” in the inactive, GDP-bound state, and cycle between the two states with the aid of accessory proteins, referred to as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). This review will focus on the ADP-ribosylation factors (Arfs), a family of G-proteins that are essential regulators of carrier vesicle formation during vesicular transport. As for most other GTPases, the Arfs themselves are vastly outnumbered by the proteins that regulate them, and a major focus in the field has been to define the functional relationships between individual GEFs and GAPs and their substrates at the cellular level. Over the years, a variety of methods have been developed to measure GTPase activation in vitro and in vivo. In vitro analysis will be discussed in the accompanying article by Randazzo and colleagues. Here we will focus on cell- and tissue-based assays and their advantages/disadvantages relative to cell-free systems.
format Online
Article
Text
id pubmed-3498073
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Landes Bioscience
record_format MEDLINE/PubMed
spelling pubmed-34980732012-11-23 Advantages and limitations of cell-based assays for GTPase activation and regulation Casanova, James E. Cell Logist Reasoned Debate Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being “on” in the active, GTP-bound state and “off” in the inactive, GDP-bound state, and cycle between the two states with the aid of accessory proteins, referred to as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). This review will focus on the ADP-ribosylation factors (Arfs), a family of G-proteins that are essential regulators of carrier vesicle formation during vesicular transport. As for most other GTPases, the Arfs themselves are vastly outnumbered by the proteins that regulate them, and a major focus in the field has been to define the functional relationships between individual GEFs and GAPs and their substrates at the cellular level. Over the years, a variety of methods have been developed to measure GTPase activation in vitro and in vivo. In vitro analysis will be discussed in the accompanying article by Randazzo and colleagues. Here we will focus on cell- and tissue-based assays and their advantages/disadvantages relative to cell-free systems. Landes Bioscience 2012-07-01 /pmc/articles/PMC3498073/ /pubmed/23181197 http://dx.doi.org/10.4161/cl.22045 Text en Copyright © 2012 Landes Bioscience http://creativecommons.org/licenses/by-nc/3.0/ This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
spellingShingle Reasoned Debate
Casanova, James E.
Advantages and limitations of cell-based assays for GTPase activation and regulation
title Advantages and limitations of cell-based assays for GTPase activation and regulation
title_full Advantages and limitations of cell-based assays for GTPase activation and regulation
title_fullStr Advantages and limitations of cell-based assays for GTPase activation and regulation
title_full_unstemmed Advantages and limitations of cell-based assays for GTPase activation and regulation
title_short Advantages and limitations of cell-based assays for GTPase activation and regulation
title_sort advantages and limitations of cell-based assays for gtpase activation and regulation
topic Reasoned Debate
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498073/
https://www.ncbi.nlm.nih.gov/pubmed/23181197
http://dx.doi.org/10.4161/cl.22045
work_keys_str_mv AT casanovajamese advantagesandlimitationsofcellbasedassaysforgtpaseactivationandregulation