Cargando…

Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest

The neural crest (NC) is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kague, Erika, Gallagher, Michael, Burke, Sally, Parsons, Michael, Franz-Odendaal, Tamara, Fisher, Shannon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498280/
https://www.ncbi.nlm.nih.gov/pubmed/23155370
http://dx.doi.org/10.1371/journal.pone.0047394
_version_ 1782249816798003200
author Kague, Erika
Gallagher, Michael
Burke, Sally
Parsons, Michael
Franz-Odendaal, Tamara
Fisher, Shannon
author_facet Kague, Erika
Gallagher, Michael
Burke, Sally
Parsons, Michael
Franz-Odendaal, Tamara
Fisher, Shannon
author_sort Kague, Erika
collection PubMed
description The neural crest (NC) is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two–transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC–derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late–forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic) and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.
format Online
Article
Text
id pubmed-3498280
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34982802012-11-15 Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest Kague, Erika Gallagher, Michael Burke, Sally Parsons, Michael Franz-Odendaal, Tamara Fisher, Shannon PLoS One Research Article The neural crest (NC) is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two–transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC–derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late–forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic) and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development. Public Library of Science 2012-11-14 /pmc/articles/PMC3498280/ /pubmed/23155370 http://dx.doi.org/10.1371/journal.pone.0047394 Text en © 2012 Kague et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Kague, Erika
Gallagher, Michael
Burke, Sally
Parsons, Michael
Franz-Odendaal, Tamara
Fisher, Shannon
Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest
title Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest
title_full Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest
title_fullStr Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest
title_full_unstemmed Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest
title_short Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest
title_sort skeletogenic fate of zebrafish cranial and trunk neural crest
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498280/
https://www.ncbi.nlm.nih.gov/pubmed/23155370
http://dx.doi.org/10.1371/journal.pone.0047394
work_keys_str_mv AT kagueerika skeletogenicfateofzebrafishcranialandtrunkneuralcrest
AT gallaghermichael skeletogenicfateofzebrafishcranialandtrunkneuralcrest
AT burkesally skeletogenicfateofzebrafishcranialandtrunkneuralcrest
AT parsonsmichael skeletogenicfateofzebrafishcranialandtrunkneuralcrest
AT franzodendaaltamara skeletogenicfateofzebrafishcranialandtrunkneuralcrest
AT fishershannon skeletogenicfateofzebrafishcranialandtrunkneuralcrest