Cargando…
Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis
High-dimensional datasets with large amounts of redundant information are nowadays available for hypothesis-free exploration of scientific questions. A particular case is genome-wide association analysis, where variations in the genome are searched for effects on disease or other traits. Bayesian va...
Autores principales: | Peltola, Tomi, Marttinen, Pekka, Vehtari, Aki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499564/ https://www.ncbi.nlm.nih.gov/pubmed/23166669 http://dx.doi.org/10.1371/journal.pone.0049445 |
Ejemplares similares
-
Bayesian Variable Selection in Searching for Additive and Dominant Effects in Genome-Wide Data
por: Peltola, Tomi, et al.
Publicado: (2012) -
On directional Metropolis Hastings algorithms
por: Eidsvik, J, et al.
Publicado: (2003) -
Control variates for the Metropolis-Hastings algorithm
por: Hammer, Hugo, et al.
Publicado: (2005) -
Stability of noisy Metropolis–Hastings
por: Medina-Aguayo, F. J., et al.
Publicado: (2015) -
On the use of local optimisations within Metropolis-Hastings
por: Tjelmeland, H, et al.
Publicado: (2002)