Cargando…

Mechanisms of action underlying the immunotherapeutic activity of Allovectin in advanced melanoma

Allovectin (velimogene aliplasmid) is a cancer immunotherapeutic currently completing a pivotal phase 3 study for metastatic melanoma. Consisting of a bicistronic plasmid encoding both major histocompatibility complex (MHC) class I heavy and light chains (HLA-B7 and β2-microglobulin, respectively) f...

Descripción completa

Detalles Bibliográficos
Autores principales: Doukas, J, Rolland, A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499708/
https://www.ncbi.nlm.nih.gov/pubmed/23037806
http://dx.doi.org/10.1038/cgt.2012.69
Descripción
Sumario:Allovectin (velimogene aliplasmid) is a cancer immunotherapeutic currently completing a pivotal phase 3 study for metastatic melanoma. Consisting of a bicistronic plasmid encoding both major histocompatibility complex (MHC) class I heavy and light chains (HLA-B7 and β2-microglobulin, respectively) formulated with a cationic lipid-based system, it is designed for direct intratumoral administration. Following injection into a single lesion, the product is intended to induce anti-tumor immune responses against both treated and distal lesions. Both the plasmid and lipid components of Allovectin contribute to the biological activity of the drug product, and its therapeutic activity is hypothesized to derive from multiple mechanisms of actions (MOAs). These include the induction of both cytotoxic T-cell and innate immune responses directed against allogeneic as well as tumor-derived targets, consequences of both an increased MHC class I expression on tumor cells and the induction of a localized immune/inflammatory response. In this paper, we review Allovectin's proposed MOAs, placing their contributions in the context of anti-tumor immunity and highlighting both preclinical and clinical supporting data.