Cargando…
Unsupervised Adaptation of Brain-Machine Interface Decoders
The performance of neural decoders can degrade over time due to non-stationarities in the relationship between neuronal activity and behavior. In this case, brain-machine interfaces (BMI) require adaptation of their decoders to maintain high performance across time. One way to achieve this is by use...
Autores principales: | Gürel, Tayfun, Mehring, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499737/ https://www.ncbi.nlm.nih.gov/pubmed/23162425 http://dx.doi.org/10.3389/fnins.2012.00164 |
Ejemplares similares
-
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces
por: Li, Simin, et al.
Publicado: (2016) -
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder
por: Boi, Fabio, et al.
Publicado: (2016) -
Unsupervised learning of facial emotion decoding skills
por: Huelle, Jan O., et al.
Publicado: (2014) -
Low-latency multi-threaded processing of neuronal signals for brain-computer interfaces
por: Fischer, Jörg, et al.
Publicado: (2014) -
Neural Decoders Using Reinforcement Learning in Brain Machine Interfaces: A Technical Review
por: Girdler, Benton, et al.
Publicado: (2022)